1
|
Maphumulo NF, Gordon ML. HIV-1 envelope facilitates the development of protease inhibitor resistance through acquiring mutations associated with viral entry and immune escape. Front Microbiol 2024; 15:1388729. [PMID: 38699474 PMCID: PMC11063367 DOI: 10.3389/fmicb.2024.1388729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction There is increasing evidence supporting a role for HIV-1 envelope in the development of Protease Inhibitor drug resistance, and a recent report from our group suggested that Env mutations co-evolve with Gag-Protease mutations in the pathway to Lopinavir resistance. In this study, we investigated the effect of co-evolving Env mutations on virus function and structure. Methods Co-receptor usage and n-linked glycosylation were investigated using Geno2Pheno as well as tools available at the Los Alamos sequence database. Molecular dynamics simulations were performed using Amber 18 and analyzed using Cpptraj, and molecular interactions were calculated using the Ring server. Results The results showed that under Protease Inhibitor drug selection pressure, the envelope gene modulates viral entry by protecting the virus from antibody recognition through the increased length and number of N-glycosylation sites observed in V1/V2 and to some extent V5. Furthermore, gp120 mutations appear to modulate viral entry through a switch to the CXCR4 coreceptor, induced by higher charge in the V3 region and specific mutations at the coreceptor binding sites. In gp41, S534A formed a hydrogen bond with L602 found in the disulfide loop region between the Heptad Repeat 1 and Heptad Repeat 2 domains and could negatively affect the association of gp120-gp41 during viral entry. Lastly, P724Q/S formed both intermolecular and intramolecular interactions with residues within the Kennedy loop, a known epitope. Discussion In conclusion, the results suggest that mutations in envelope during Protease Inhibitor treatment failure are related to immune escape and that S534A mutants could preferentially use the cell-to-cell route of infection.
Collapse
Affiliation(s)
| | - Michele L. Gordon
- Department of Virology, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natala, Durban, South Africa
| |
Collapse
|
2
|
Zani A, Messali S, Bugatti A, Uggeri M, Rondina A, Sclavi L, Caccuri F, Caruso A. Molecular mechanisms behind the generation of pro-oncogenic HIV-1 matrix protein p17 variants. J Gen Virol 2024; 105. [PMID: 38687324 DOI: 10.1099/jgv.0.001982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.
Collapse
Affiliation(s)
- Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Uggeri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Rondina
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Sclavi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mures, Romania
| |
Collapse
|
3
|
Abdullahi A, Diaz AG, Fopoussi OM, Beloukas A, Fokom Defo V, Kouanfack C, Torimiro J, Geretti AM. A detailed characterization of drug resistance during darunavir/ritonavir monotherapy highlights a high barrier to the emergence of resistance mutations in protease but identifies alternative pathways of resistance. J Antimicrob Chemother 2024; 79:339-348. [PMID: 38153241 PMCID: PMC10832591 DOI: 10.1093/jac/dkad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Maintenance monotherapy with ritonavir-boosted darunavir has yielded variable outcomes and is not recommended. Trial samples offer valuable opportunities for detailed studies. We analysed samples from a 48 week trial in Cameroon to obtain a detailed characterization of drug resistance. METHODS Following failure of NNRTI-based therapy and virological suppression on PI-based therapy, participants were randomized to ritonavir-boosted darunavir (n = 81) or tenofovir disoproxil fumarate/lamivudine +ritonavir-boosted lopinavir (n = 39). At study entry, PBMC-derived HIV-1 DNA underwent bulk Protease and Reverse Transcriptase (RT) sequencing. At virological rebound (confirmed or last available HIV-1 RNA ≥ 60 copies/mL), plasma HIV-1 RNA underwent ultradeep Protease and RT sequencing and bulk Gag-Protease sequencing. The site-directed mutant T375A (p2/p7) was characterized phenotypically using a single-cycle assay. RESULTS NRTI and NNRTI resistance-associated mutations (RAMs) were detected in 52/90 (57.8%) and 53/90 (58.9%) HIV-1 DNA samples, respectively. Prevalence in rebound HIV-1 RNA (ritonavir-boosted darunavir, n = 21; ritonavir-boosted lopinavir, n = 2) was 9/23 (39.1%) and 10/23 (43.5%), respectively, with most RAMs detected at frequencies ≥15%. The resistance patterns of paired HIV-1 DNA and RNA sequences were partially consistent. No darunavir RAMs were found. Among eight participants experiencing virological rebound on ritonavir-boosted darunavir (n = 12 samples), all had Gag mutations associated with PI exposure, including T375N, T375A (p2/p7), K436R (p7/p1) and substitutions in p17, p24, p2 and p6. T375A conferred 10-fold darunavir resistance and increased replication capacity. CONCLUSIONS The study highlights the high resistance barrier of ritonavir-boosted darunavir while identifying alternative pathways of resistance through Gag substitutions. During virological suppression, resistance patterns in HIV-1 DNA reflect treatment history, but due to technical and biological considerations, cautious interpretation is warranted.
Collapse
Affiliation(s)
- Adam Abdullahi
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, UK
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ana Garcia Diaz
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Olga Mafotsing Fopoussi
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Apostolos Beloukas
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, Athens, Greece
| | - Victoire Fokom Defo
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Charles Kouanfack
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Judith Torimiro
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Anna Maria Geretti
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Rome, Italy
- Department of Infection, North Middlesex University Hospital, London, UK
- School of Immunity and Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
4
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
5
|
Asia LK, Jansen Van Vuren E, Williams ME. The influence of viral protein R amino acid substitutions on clinical outcomes in people living with HIV: A systematic review. Eur J Clin Invest 2022; 53:e13943. [PMID: 36579370 DOI: 10.1111/eci.13943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The HIV viral protein R (Vpr) is a multifunction protein involved in the pathophysiology of HIV-1. Recent evidence has suggested that Vpr amino acid substitutions influence the pathophysiology of HIV-1 and clinical outcomes in people living with HIV (PLWH). Several studies have linked Vpr amino acid substitutions to clinical outcomes in PLWH; however, there is no clear consensus as to which amino acids or amino acid substitutions are most important in the pathophysiology and clinical outcomes in PLWH. We, therefore, conducted a systematic review of studies investigating Vpr amino acid substitutions and clinical outcomes in PLWH. METHODS PubMed, Scopus and Web of Science databases were searched according to PRISMA guidelines using a search protocol designed specifically for this study. RESULTS A total of 22 studies were included for data extraction, comprising 14 cross-sectional and 8 longitudinal studies. Results indicated that Vpr amino acid substitutions were associated with specific clinical outcomes, including disease progressions, neurological outcomes and treatment status. Studies consistently showed that the Vpr substitution 63T was associated with slower disease progression, whereas 77H and 85P were associated with no significant contribution to disease progression. CONCLUSIONS Vpr-specific amino acid substitutions may be contributors to clinical outcomes in PLWH, and future studies should consider investigating the Vpr amino acid substitutions highlighted in this review.
Collapse
Affiliation(s)
- Levanco K Asia
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Esmé Jansen Van Vuren
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.,South African Medical Research Council: Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Marie V, Gordon M. Understanding the co-evolutionary molecular mechanisms of resistance in the HIV-1 Gag and protease. J Biomol Struct Dyn 2022; 40:10852-10861. [PMID: 34253143 DOI: 10.1080/07391102.2021.1950569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to high human immunodeficiency virus type 1 (HIV-1) subtype C infections coupled with increasing antiretroviral treatment failure, the elucidation of complex drug resistance mutational patterns arising through protein co-evolution is required. Despite the inclusion of potent protease inhibitors Lopinavir (LPV) and Darunavir (DRV) in second- and third-line therapies, many patients still fail treatment due to the accumulation of mutations in protease (PR) and recently, Gag. To understand the co-evolutionary molecular mechanisms of resistance in the HIV-1 PR and Gag, we performed 100 ns molecular dynamic simulations on multidrug resistant PR's when bound to LPV, DRV or a mutated A431V NC|p1 Gag cleavage site (CS). Here we showed that distinct changes in PR's active site, flap and elbow regions due to several PR resistance mutations (L10F, M46I, I54V, L76V, V82A) were found to alter LPV and DRV drug binding. However, binding was significantly exacerbated when the mutant PRs were bound to the NC|p1 Gag CS. Although A431V was shown to coordinate several residues in PR, the L76V PR mutation was found to have a significant role in substrate recognition. Consequently, a greater binding affinity was observed when the mutated substrate was bound to an L76V-inclusive PR mutant (Gbind: -62.46 ± 5.75 kcal/mol) than without (Gbind: -50.34 ± 6.28 kcal/mol). These data showed that the co-selection of resistance mutations in the enzyme and substrate can simultaneously constrict regions in PR's active site whilst flexing the flaps to allow flexible movement of the substrate and multiple, complex mechanisms of resistance to occur. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veronna Marie
- KwaZulu-Natal Research Innovation & Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, DurbanSouth Africa
| | - Michelle Gordon
- KwaZulu-Natal Research Innovation & Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, DurbanSouth Africa
| |
Collapse
|
7
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
8
|
Kemp SA, Charles OJ, Derache A, Smidt W, Martin DP, Iwuji C, Adamson J, Govender K, de Oliveira T, Dabis F, Pillay D, Goldstein RA, Gupta RK. HIV-1 Evolutionary Dynamics under Nonsuppressive Antiretroviral Therapy. mBio 2022; 13:e0026922. [PMID: 35446121 PMCID: PMC9239331 DOI: 10.1128/mbio.00269-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Prolonged virologic failure on 2nd-line protease inhibitor (PI)-based antiretroviral therapy (ART) without emergence of major protease mutations is well recognized and provides an opportunity to study within-host evolution in long-term viremic individuals. Using next-generation sequencing and in silico haplotype reconstruction, we analyzed whole-genome sequences from longitudinal plasma samples of eight chronically infected HIV-1-positive individuals failing 2nd-line regimens from the French National Agency for AIDS and Viral Hepatitis Research (ANRS) 12249 Treatment as Prevention (TasP) trial. On nonsuppressive ART, there were large fluctuations in synonymous and nonsynonymous variant frequencies despite stable viremia. Reconstructed haplotypes provided evidence for selective sweeps during periods of partial adherence, and viral haplotype competition, during periods of low drug exposure. Drug resistance mutations in reverse transcriptase (RT) were used as markers of viral haplotypes in the reservoir, and their distribution over time indicated recombination. We independently observed linkage disequilibrium decay, indicative of recombination. These data highlight dramatic changes in virus population structure that occur during stable viremia under nonsuppressive ART. IMPORTANCE HIV-1 infections are most commonly initiated with a single founder virus and are characterized by extensive inter- and intraparticipant genetic diversity. However, existing literature on HIV-1 intrahost population dynamics is largely limited to untreated infections, predominantly in subtype B-infected individuals. The manuscript characterizes viral population dynamics in long-term viremic treatment-experienced individuals, which has not been previously characterized. These data are particularly relevant for understanding HIV dynamics but can also be applied to other RNA viruses. With this unique data set we propose that the virus is highly unstable, and we have found compelling evidence of HIV-1 within-host viral diversification, recombination, and haplotype competition during nonsuppressive ART.
Collapse
Affiliation(s)
- Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Oscar J. Charles
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | - Werner Smidt
- Africa Health Research Institute, Durban, South Africa
| | - Darren P. Martin
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Collins Iwuji
- Africa Health Research Institute, Durban, South Africa
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | | | - Tulio de Oliveira
- Africa Health Research Institute, Durban, South Africa
- KRISP - KwaZulu-Natal Research and Innovation Sequencing Platform, UKZN, Durban, South Africa
| | - Francois Dabis
- INSERM U1219-Centre Inserm Bordeaux Population Health, Université de Bordeaux, France
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health, France
| | - Deenan Pillay
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
9
|
Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens 2022; 11:pathogens11050534. [PMID: 35631055 PMCID: PMC9145614 DOI: 10.3390/pathogens11050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
We describe drug-resistance mutation dynamics of the gag gene among individuals under antiretroviral virologic failure who underwent analytical treatment interruption (ATI). These mutations occur in and around the cleavage sites that form the particles that become the mature HIV-1 virus. The study involved a 12-week interruption in antiretroviral therapy (ART) and sequencing of the gag gene in 38 individuals experiencing virologic failure and harboring triple-class resistant HIV strains. Regions of the gag gene surrounding the NC-p2 and p1-p6 cleavage sites were sequenced at baseline before ATI and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Fourteen of the sixteen patients sequenced presented at least one mutation in the gag gene at baseline, with an average of 4.93 mutations per patient. All the mutations had reverted to the wild type by the end of the study. Mutations in the gag gene complement mutations in the pol gene to restore HIV fitness. Those mutations around cleavage sites and within substrates contribute to protease inhibitor resistance and difficulty in re-establishing effective virologic suppression. ART interruption in the presence of antiretroviral resistant HIV strains was used here as a practical measure for more adapted HIV profiles in the absence of ART selective pressure.
Collapse
|
10
|
Wang S, Sotcheff SL, Gallardo CM, Jaworski E, Torbett B, Routh A. Covariation of viral recombination with single nucleotide variants during virus evolution revealed by CoVaMa. Nucleic Acids Res 2022; 50:e41. [PMID: 35018461 PMCID: PMC9023271 DOI: 10.1093/nar/gkab1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christian M Gallardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Detection of Gag C-terminal mutations among HIV-1 non-B subtypes in a subset of Cameroonian patients. Sci Rep 2022; 12:1374. [PMID: 35082353 PMCID: PMC8791941 DOI: 10.1038/s41598-022-05375-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Response to ritonavir-boosted-protease inhibitors (PI/r)-based regimen is associated with some Gag mutations among HIV-1 B-clade. There is limited data on Gag mutations and their covariation with mutations in protease among HIV-1 non-B-clades at PI/r-based treatment failure. Thus, we characterized Gag mutations present in isolates from HIV-1 infected individuals treated with a PI/r-regimen (n = 143) and compared them with those obtained from individuals not treated with PI/r (ART-naïve [n = 101] or reverse transcriptase inhibitors (RTI) treated [n = 118]). The most frequent HIV-1 subtypes were CRF02_AG (54.69%), A (13.53%), D (6.35%) and G (4.69%). Eighteen Gag mutations showed a significantly higher prevalence in PI/r-treated isolates compared to ART-naïve (p < 0.05): Group 1 (prevalence < 1% in drug-naïve): L449F, D480N, L483Q, Y484P, T487V; group 2 (prevalence 1–5% in drug-naïve): S462L, I479G, I479K, D480E; group 3 (prevalence ≥ 5% in drug-naïve): P453L, E460A, R464G, S465F, V467E, Q474P, I479R, E482G, T487A. Five Gag mutations (L449F, P453L, D480E, S465F, Y484P) positively correlated (Phi ≥ 0.2, p < 0.05) with protease-resistance mutations. At PI/r-failure, no significant difference was observed between patients with and without these associated Gag mutations in term of viremia or CD4 count. This analysis suggests that some Gag mutations show an increased frequency in patients failing PIs among HIV-1 non-B clades.
Collapse
|
12
|
Nka AD, Teto G, Santoro MM, Ngum Ndze V, Takou D, Dambaya B, Ngoufack Jagni Semengue E, Fabeni L, Perno CF, Colizzi V, Ceccherini-Silberstein F, Fokam J. HIV-1 Gag gene mutations, treatment response and drug resistance to protease inhibitors: A systematic review and meta-analysis protocol. PLoS One 2021; 16:e0253587. [PMID: 34197501 PMCID: PMC8248685 DOI: 10.1371/journal.pone.0253587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Some mutations in the HIV-1 Gag gene are known to confer resistance to ritonavir-boosted protease inhibitors (PI/r), but their clinical implications remain controversial. This review aims at summarizing current knowledge on HIV-1 Gag gene mutations that are selected under PI/r pressure and their distribution according to viral subtypes. MATERIALS AND METHODS Randomized and non-randomized trials, cohort and cross-sectional studies evaluating HIV-1 Gag gene mutations and protease resistance associated mutations, will all be included. Searches will be conducted (from January 2000 onwards) in PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Latin American and Caribbean Health Sciences Literature (LILAC), Web of Science, African Journals Online, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases. Hand searching of the reference lists of relevant reviews and trials will be conducted and we will also look for conference abstracts. Genotypic profiles of both Gag gene and the protease region as well as viral subtypes (especially B vs. non B) will all serve as comparators. Primary outcomes will be the "prevalence of Gag mutations" and the "prevalence of PI/r resistance associated mutations". Secondary outcomes will be the "rate of treatment failure" and the distribution of Gag mutations according to subtypes. Two reviewers will independently screen titles and abstracts, assess the full texts for eligibility, and extract data. If data permits, random effects models will be used where appropriate. This study will be reported according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta Analyses. DISCUSSION This systematic review will help identify HIV-1 Gag gene mutations associated to PI/r-based regimen according to viral subtypes. Findings of this review will help to better understand the implications of the Gag gene mutations in PI/r treatment failure. This may later justify considerations of Gag-genotyping within HIV drug resistance interpretation algorithms in the clinical management of patients receiving PI/r regimens. SYSTEMATIC REVIEW REGISTRATION PROSPERO: CRD42019114851.
Collapse
Affiliation(s)
- Alex Durand Nka
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
- University of Rome “Tor Vergata”, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Georges Teto
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
| | | | - Valantine Ngum Ndze
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Désiré Takou
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
| | - Beatrice Dambaya
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
| | - Ezechiel Ngoufack Jagni Semengue
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
- University of Rome “Tor Vergata”, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" -IRCCS, Rome, Italy
| | | | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
- University of Rome “Tor Vergata”, Rome, Italy
- Evangelical University of Cameroon, Bandjoun, Cameroon
- Chair of Biotechnology-UNESCO, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Joseph Fokam
- Chantal BIYA International Reference Centre for research on HIV/AIDS Prevention and Management, (CIRCB), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
13
|
Absence of Lenacapavir (GS-6207) Phenotypic Resistance in HIV Gag Cleavage Site Mutants and in Isolates with Resistance to Existing Drug Classes. Antimicrob Agents Chemother 2021; 65:AAC.02057-20. [PMID: 33288639 DOI: 10.1128/aac.02057-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Lenacapavir (LEN; GS-6207) is a potent first-in-class inhibitor of HIV-1 capsid with long-acting properties and the potential for subcutaneous dosing every 3 months or longer. In the clinic, a single subcutaneous LEN injection (20 mg to 750 mg) in people with HIV (PWH) induced a strong antiviral response, with a >2.3 mean log10 decrease in HIV-1 RNA at day 10. HIV-1 Gag mutations near protease (PR) cleavage sites have emerged with the use of protease inhibitors (PIs). Here, we have characterized the activity of LEN in mutants with Gag cleavage site mutations (GCSMs) and mutants resistant to other drug classes. HIV mutations were inserted into the pXXLAI clone, and the resulting mutants (n = 70) were evaluated using a 5-day antiviral assay. LEN EC50 fold change versus the wild type ranged from 0.4 to 1.9 in these mutants, similar to that for the control drug. In contrast, reduced susceptibility to PIs and maturation inhibitors (MIs) was observed. Testing of isolates with resistance against the 4 main classes of drugs (n = 40) indicated wild-type susceptibility to LEN (fold change ranging from 0.3 to 1.1), while reduced susceptibility was observed for control drugs. HIV GCSMs did not impact the activity of LEN, while some conferred resistance to MIs and PIs. Similarly, LEN activity was not affected by naturally occurring variations in HIV Gag, in contrast to the reduced susceptibility observed for MIs. Finally, the activity of LEN was not affected by the presence of resistance mutations to the 4 main antiretroviral (ARV) drug classes. These data support the evaluation of LEN in PWH with multiclass resistance.
Collapse
|
14
|
Yeo JY, Koh DWS, Yap P, Goh GR, Gan SKE. Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types. Int J Mol Sci 2020; 22:E370. [PMID: 33396460 PMCID: PMC7796399 DOI: 10.3390/ijms22010370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Darius Wen-Shuo Koh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Ping Yap
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Ghin-Ray Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Samuel Ken-En Gan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648, Singapore
| |
Collapse
|
15
|
Datir R, Kemp S, El Bouzidi K, Mlchocova P, Goldstein R, Breuer J, Towers GJ, Jolly C, Quiñones-Mateu ME, Dakum PS, Ndembi N, Gupta RK. In Vivo Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix. mBio 2020; 11:e02036-20. [PMID: 33144375 PMCID: PMC7642677 DOI: 10.1128/mbio.02036-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness.
Collapse
Affiliation(s)
| | - Steven Kemp
- University College London, London, United Kingdom
| | | | - Petra Mlchocova
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Judy Breuer
- University College London, London, United Kingdom
| | | | - Clare Jolly
- University College London, London, United Kingdom
| | | | - Patrick S Dakum
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicaise Ndembi
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
16
|
Zhang TH, Dai L, Barton JP, Du Y, Tan Y, Pang W, Chakraborty AK, Lloyd-Smith JO, Sun R. Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease. PLoS Genet 2020; 16:e1009009. [PMID: 33085662 PMCID: PMC7605711 DOI: 10.1371/journal.pgen.1009009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/02/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant mutations often have deleterious impacts on replication fitness, posing a fitness cost that can only be overcome by compensatory mutations. However, the role of fitness cost in the evolution of drug resistance has often been overlooked in clinical studies or in vitro selection experiments, as these observations only capture the outcome of drug selection. In this study, we systematically profile the fitness landscape of resistance-associated sites in HIV-1 protease using deep mutational scanning. We construct a mutant library covering combinations of mutations at 11 sites in HIV-1 protease, all of which are associated with resistance to protease inhibitors in clinic. Using deep sequencing, we quantify the fitness of thousands of HIV-1 protease mutants after multiple cycles of replication in human T cells. Although the majority of resistance-associated mutations have deleterious effects on viral replication, we find that epistasis among resistance-associated mutations is predominantly positive. Furthermore, our fitness data are consistent with genetic interactions inferred directly from HIV sequence data of patients. Fitness valleys formed by strong positive epistasis reduce the likelihood of reversal of drug resistance mutations. Overall, our results support the view that strong compensatory effects are involved in the emergence of clinically observed resistance mutations and provide insights to understanding fitness barriers in the evolution and reversion of drug resistance.
Collapse
Affiliation(s)
- Tian-hao Zhang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Yushen Du
- School of Medicine, ZheJiang University, Hangzhou, 210000, China
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenwen Pang
- Department of Public Health Laboratory Science, West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Departments of Chemical Engineering, Physics, & Chemistry, Massachusetts Institute of Technology, MA 21309, USA
- Ragon Institute of MGH, MIT, & Harvard, Cambridge, MA 21309, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Ren Sun
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
18
|
Blanch-Lombarte O, Santos JR, Peña R, Jiménez-Moyano E, Clotet B, Paredes R, Prado JG. HIV-1 Gag mutations alone are sufficient to reduce darunavir susceptibility during virological failure to boosted PI therapy. J Antimicrob Chemother 2020; 75:2535-2546. [PMID: 32556165 PMCID: PMC7443716 DOI: 10.1093/jac/dkaa228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virological failure (VF) to boosted PIs with a high genetic barrier is not usually linked to the development of resistance-associated mutations in the protease gene. METHODS From a cohort of 520 HIV-infected subjects treated with lopinavir/ritonavir or darunavir/ritonavir monotherapy, we retrospectively identified nine patients with VF. We sequenced the HIV-1 Gag-protease region and generated clonal virus from plasma samples. We characterized phenotypically clonal variants in terms of replicative capacity and susceptibility to PIs. Also, we used VESPA to identify signature mutations and 3D molecular modelling information to detect conformational changes in the Gag region. RESULTS All subjects analysed harboured Gag-associated polymorphisms in the absence of resistance mutations in the protease gene. Most Gag changes occurred outside Gag cleavage sites. VESPA analyses identified K95R and R286K (P < 0.01) as signature mutations in Gag present at VF. In one out of four patients with clonal analysis available, we identified clonal variants with high replicative capacity and 8- to 13-fold reduction in darunavir susceptibility. These clonal variants harboured K95R, R286K and additional mutations in Gag. Low susceptibility to darunavir was dependent on the Gag sequence context. All other clonal variants analysed preserved drug susceptibility and virus replicative capacity. CONCLUSIONS Gag mutations may reduce darunavir susceptibility in the absence of protease mutations while preserving viral fitness. This effect is Gag-sequence context dependent and may occur during boosted PI failure.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
19
|
Olotu FA, Agoni C, Soremekun O, Soliman MES. The recent application of 3D-QSAR and docking studies to novel HIV-protease inhibitor drug discovery. Expert Opin Drug Discov 2020; 15:1095-1110. [PMID: 32692273 DOI: 10.1080/17460441.2020.1773428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Despite the availability of FDA approved inhibitors of HIV protease, numerous efforts are still ongoing to achieve 'near-perfect' drugs devoid of characteristic adverse side effects, toxicities, and mutational resistance. While experimental methods have been plagued with huge consumption of time and resources, there has been an incessant shift towards the use of computational simulations in HIV protease inhibitor drug discovery. AREAS COVERED Herein, the authors review the numerous applications of 3D-QSAR modeling methods over recent years relative to the design of new HIV protease inhibitors from a series of experimentally derived compounds. Also, the augmentative contributions of molecular docking are discussed. EXPERT OPINION Efforts to optimize 3D QSAR and molecular docking for HIV-1 drug discovery are ongoing, which could further incorporate inhibitor motions at the active site using molecular dynamics parameters. Also, highly predictive machine learning algorithms such as random forest, K-means, decision trees, linear regression, hierarchical clustering, and Bayesian classifiers could be employed.
Collapse
Affiliation(s)
- Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus , Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus , Durban, 4001, South Africa
| | - Opeyemi Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus , Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus , Durban, 4001, South Africa
| |
Collapse
|
20
|
Saito A, Sultana T, Ode H, Nohata K, Samune Y, Nakayama EE, Iwatani Y, Shioda T. The 4th and 112th Residues of Viral Capsid Cooperatively Modulate Capsid-CPSF6 Interactions of HIV-1. AIDS Res Hum Retroviruses 2020; 36:513-521. [PMID: 31941344 PMCID: PMC7262650 DOI: 10.1089/aid.2019.0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Binding of HIV-1 capsid (CA) to cleavage and polyadenylation specificity factor 6 (CPSF6) is hypothesized to provide a significant fitness advantage to in vivo viral replication, explaining why CA-CPSF6 interactions are strictly conserved in primate lentiviruses. We recently identified a Q4R mutation in CA after propagation of an interferon (IFN)-β-hypersensitive CA mutant, RGDA/Q112D (H87R, A88G, P90D, P93A and Q112D) virus, in IFN-β-treated cells. The Q4R substitution conferred significant IFN-β resistance to the RGDA/Q112D virus by affecting several properties of the virus, including the sensitivity to myxovirus resistance protein B (MxB), the kinetics of reverse transcription, and the initiation of uncoating. Notably, the Q4R substitution restored the CPSF6 interaction of the RGDA/Q112D virus. To better understand how the Q4R substitution modulated the CA-CPSF6 interaction, we generated a series of CA mutants harboring substitutions at the 4th and 112th residues. In contrast to the effect in the RGDA/Q112D background, the Q4R substitution diminished CA-CPSF6 interaction in an otherwise wild-type virus. Our genetic and structural analyses revealed that while either the Q4R or Q112D substitution impaired CA-CPSF6 interaction, the combination of these substitutions restored this interaction. These results suggest that the 4th and 112th residues in HIV-1 CA cooperatively modulate CA-CPSF6 interactions, further highlighting the tremendous levels of plasticity in primate lentivirus CA, which is one of the barriers to antiretroviral therapy in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tahmina Sultana
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kyotaro Nohata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshihiro Samune
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E. Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
21
|
Thompson JA, Kityo C, Dunn D, Hoppe A, Ndashimye E, Hakim J, Kambugu A, van Oosterhout JJ, Arribas J, Mugyenyi P, Walker AS, Paton NI. Evolution of Protease Inhibitor Resistance in Human Immunodeficiency Virus Type 1 Infected Patients Failing Protease Inhibitor Monotherapy as Second-line Therapy in Low-income Countries: An Observational Analysis Within the EARNEST Randomized Trial. Clin Infect Dis 2020; 68:1184-1192. [PMID: 30060027 DOI: 10.1093/cid/ciy589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/24/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Limited viral load (VL) testing in human immunodeficiency virus (HIV) treatment programs in low-income countries often delays detection of treatment failure. The impact of remaining on failing protease inhibitor (PI)-containing regimens is unclear. METHODS We retrospectively tested VL in 2164 stored plasma samples from 386 patients randomized to receive lopinavir monotherapy (after initial raltegravir induction) in the Europe-Africa Research Network for Evaluation of Second-line Therapy (EARNEST) trial. Protease genotypic resistance testing was performed when VL >1000 copies/mL. We assessed evolution of PI resistance mutations from virological failure (confirmed VL >1000 copies/mL) until PI monotherapy discontinuation and examined associations using mixed-effects models. RESULTS Median post-failure follow-up (in 118 patients) was 68 (interquartile range, 48-88) weeks. At failure, 20% had intermediate/high-level resistance to lopinavir. At 40-48 weeks post-failure, 68% and 51% had intermediate/high-level resistance to lopinavir and atazanavir; 17% had intermediate-level resistance (none high) to darunavir. Common PI mutations were M46I, I54V, and V82A. On average, 1.7 (95% confidence interval 1.5-2.0) PI mutations developed per year; increasing after the first mutation; decreasing with subsequent mutations (P < .0001). VL changes were modest, mainly driven by nonadherence (P = .006) and PI mutation development (P = .0002); I47A was associated with a larger increase in VL than other mutations (P = .05). CONCLUSIONS Most patients develop intermediate/high-level lopinavir resistance within 1 year of ongoing viral replication on monotherapy but retain susceptibility to darunavir. Viral load increased slowly after failure, driven by non-adherence and PI mutation development. CLINICAL TRIALS REGISTRATION NCT00988039.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - David Dunn
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom
| | - Anne Hoppe
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Division of Infection and Immunity, University College London, United Kingdom
| | - Emmanuel Ndashimye
- Joint Clinical Research Centre, Kampala, Uganda.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - James Hakim
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Joep J van Oosterhout
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi.,Dignitas International, Zomba, Malawi
| | | | | | - A Sarah Walker
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom
| | - Nicholas I Paton
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Yong Loo Lin School of Medicine, National University of Singapore
| | | |
Collapse
|
22
|
Evidence of genomic information and structural restrictions of HIV-1 PR and RT gene regions from individuals experiencing antiretroviral virologic failure. INFECTION GENETICS AND EVOLUTION 2019; 78:104134. [PMID: 31837484 DOI: 10.1016/j.meegid.2019.104134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study analyzed Protease-PR and Reverse Transcriptase-RT HIV-1 genomic information entropy metrics among patients under antiretroviral virologic failure, according to the numbers of virologic failures or resistance mutations. METHODS For this purpose, we used genomic sequences from PR and RT of HIV-1 from a cohort of chronic patients followed up at São Paulo Hospital. RESULTS Informational entropy proportionally increases with the number of antiretroviral virologic failures in PR and RT (p < .001). Affected regions of PR were related to catalytic and structural functions, such as Fulcrum (K20) Flap (M46) and Cantilever (A71). In RT, this occurred at Fingers (E44) and Palm (K219). Informational entropy increases according to the number of resistance mutations in PR and RT (p < .001). Higher PR entropy was proportional to the resistance mutation numbers in Fulcrum (L10), Active site (L24) Flap (M46), Cantilever (L63) and near Interface (L90). In RT, they related to regions responsible for protein stability such as Fingers (T39) and Palm (L100). CONCLUSIONS The antiretroviral selective pressure affects HIV genomic informational entropy at the PR and RT regions, leading to the emergence of more unstable virions. Mapping the three-dimensional structure in these HIV-1 proteins is relevant to designing new antiretroviral targeting resistant strains.
Collapse
|
23
|
Henes M, Lockbaum GJ, Kosovrasti K, Leidner F, Nachum GS, Nalivaika EA, Lee SK, Spielvogel E, Zhou S, Swanstrom R, Bolon DN, Yilmaz NK, Schiffer CA. Picomolar to Micromolar: Elucidating the Role of Distal Mutations in HIV-1 Protease in Conferring Drug Resistance. ACS Chem Biol 2019; 14:2441-2452. [PMID: 31361460 PMCID: PMC6941144 DOI: 10.1021/acschembio.9b00370] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance continues to be a growing global problem. The efficacy of small molecule inhibitors is threatened by pools of genetic diversity in all systems, including antibacterials, antifungals, cancer therapeutics, and antivirals. Resistant variants often include combinations of active site mutations and distal "secondary" mutations, which are thought to compensate for losses in enzymatic activity. HIV-1 protease is the ideal model system to investigate these combinations and underlying molecular mechanisms of resistance. Darunavir (DRV) binds wild-type (WT) HIV-1 protease with a potency of <5 pM, but we have identified a protease variant that loses potency to DRV 150 000-fold, with 11 mutations in and outside the active site. To elucidate the roles of these mutations in DRV resistance, we used a multidisciplinary approach, combining enzymatic assays, crystallography, and molecular dynamics simulations. Analysis of protease variants with 1, 2, 4, 8, 9, 10, and 11 mutations showed that the primary active site mutations caused ∼50-fold loss in potency (2 mutations), while distal mutations outside the active site further decreased DRV potency from 13 nM (8 mutations) to 0.76 μM (11 mutations). Crystal structures and simulations revealed that distal mutations induce subtle changes that are dynamically propagated through the protease. Our results reveal that changes remote from the active site directly and dramatically impact the potency of the inhibitor. Moreover, we find interdependent effects of mutations in conferring high levels of resistance. These mechanisms of resistance are likely applicable to many other quickly evolving drug targets, and the insights may have implications for the design of more robust inhibitors.
Collapse
Affiliation(s)
- Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gily S. Nachum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Sook-Kyung Lee
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ean Spielvogel
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shuntai Zhou
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States,Corresponding authors Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856 1867;
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States,Corresponding authors Celia A. Schiffer: Phone: +1 508 856 8008; , Nese Kurt Yilmaz: Phone: +1 508 856 1867;
| |
Collapse
|
24
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
25
|
Su CTT, Koh DWS, Gan SKE. Reviewing HIV-1 Gag Mutations in Protease Inhibitors Resistance: Insights for Possible Novel Gag Inhibitor Designs. Molecules 2019; 24:molecules24183243. [PMID: 31489889 PMCID: PMC6767625 DOI: 10.3390/molecules24183243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
HIV protease inhibitors against the viral protease are often hampered by drug resistance mutations in protease and in the viral substrate Gag. To overcome this drug resistance and inhibit viral maturation, targeting Gag alongside protease rather than targeting protease alone may be more efficient. In order to successfully inhibit Gag, understanding of its drug resistance mutations and the elicited structural changes on protease binding needs to be investigated. While mutations on Gag have already been mapped to protease inhibitor resistance, there remain many mutations, particularly the non-cleavage mutations, that are not characterized. Through structural studies to unravel how Gag mutations contributes to protease drug resistance synergistically, it is thus possible to glean insights to design novel Gag inhibitors. In this review, we discuss the structural role of both novel and previously reported Gag mutations in PI resistance, and how new Gag inhibitors can be designed.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Bioinformatics Institute, A*STAR, Singapore 138671, Singapore.
- p53 Laboratory, A*STAR, Singapore 138648, Singapore.
| |
Collapse
|
26
|
Agniswamy J, Kneller DW, Brothers R, Wang YF, Harrison RW, Weber IT. Highly Drug-Resistant HIV-1 Protease Mutant PRS17 Shows Enhanced Binding to Substrate Analogues. ACS OMEGA 2019; 4:8707-8719. [PMID: 31172041 PMCID: PMC6545544 DOI: 10.1021/acsomega.9b00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/07/2019] [Indexed: 05/24/2023]
Abstract
We report the structural analysis of highly drug-resistant human immunodeficiency virus protease (PR) variant PRS17, rationally selected by machine learning, in complex with substrate analogues. Crystal structures were solved of inhibitor-free inactive PRS17-D25N, wild-type PR/CA-p2 complex, and PRS17 in complex with substrate analogues, CA-p2 and p2-NC. Peptide analogues p2-NC and CA-p2 exhibit inhibition constants of 514 and 22 nM, respectively, for PRS17 or approximately 3-fold better than for PR. CA-p2 is a better inhibitor of PRS17 than are clinical inhibitors (K i = 50-8390 nM) except for amprenavir (K i = 11 nM). G48V resistance mutation induces curled flap tips in PRS17-D25N structure. The inner P2-P2' residues of substrate analogues in PRS17 complexes maintain similar conformations to those of wild-type complex, while significant conformational changes are observed in the peripheral residues P3, P4' of CA-p2 and P3, P4, and P3' of p2-NC. The loss of β-branched side chain by V82S mutation initiates a shift in 80's loop and reshapes the S3/S3' subsite, which enhances substrate binding with new hydrogen bonds and van der Waals interactions that are absent in the wild-type structures. The steric hindrance caused by G48V mutation in the flap of PRS17 contributes to altered binding interactions of P3 Arg, P4' norleucine of CA-p2, and P4 and P3' of p2-NC with the addition of new hydrogen bonds and van der Waals contacts. The enhanced interaction of PRS17 with substrate analogues agrees with their relative inhibition, suggesting that this mutant improves substrate binding while decreasing affinity for clinical inhibitors.
Collapse
Affiliation(s)
- Johnson Agniswamy
- Department
of Biology, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302, United
States
| | - Daniel W. Kneller
- Department
of Biology, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302, United
States
| | - Rowan Brothers
- Department
of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302, United
States
| | - Yuan-Fang Wang
- Department
of Biology, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302, United
States
| | - Robert W. Harrison
- Department
of Computer Science, Georgia State University, P.O. Box 5060, Atlanta, Georgia 30302, United
States
| | - Irene T. Weber
- Department
of Biology, Georgia State University, P.O. Box 4010, Atlanta, Georgia 30302, United
States
- Department
of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, Georgia 30302, United
States
| |
Collapse
|
27
|
Data-driven supervised learning of a viral protease specificity landscape from deep sequencing and molecular simulations. Proc Natl Acad Sci U S A 2018; 116:168-176. [PMID: 30587591 DOI: 10.1073/pnas.1805256116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biophysical interactions between proteins and peptides are key determinants of molecular recognition specificity landscapes. However, an understanding of how molecular structure and residue-level energetics at protein-peptide interfaces shape these landscapes remains elusive. We combine information from yeast-based library screening, next-generation sequencing, and structure-based modeling in a supervised machine learning approach to report the comprehensive sequence-energetics-function mapping of the specificity landscape of the hepatitis C virus (HCV) NS3/4A protease, whose function-site-specific cleavages of the viral polyprotein-is a key determinant of viral fitness. We screened a library of substrates in which five residue positions were randomized and measured cleavability of ∼30,000 substrates (∼1% of the library) using yeast display and fluorescence-activated cell sorting followed by deep sequencing. Structure-based models of a subset of experimentally derived sequences were used in a supervised learning procedure to train a support vector machine to predict the cleavability of 3.2 million substrate variants by the HCV protease. The resulting landscape allows identification of previously unidentified HCV protease substrates, and graph-theoretic analyses reveal extensive clustering of cleavable and uncleavable motifs in sequence space. Specificity landscapes of known drug-resistant variants are similarly clustered. The described approach should enable the elucidation and redesign of specificity landscapes of a wide variety of proteases, including human-origin enzymes. Our results also suggest a possible role for residue-level energetics in shaping plateau-like functional landscapes predicted from viral quasispecies theory.
Collapse
|
28
|
The N-Terminus of the HIV-1 p6 Gag Protein Regulates Susceptibility to Degradation by IDE. Viruses 2018; 10:v10120710. [PMID: 30545091 PMCID: PMC6316412 DOI: 10.3390/v10120710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
As part of the Pr55Gag polyprotein, p6 fulfills an essential role in the late steps of the replication cycle. However, almost nothing is known about the functions of the mature HIV-1 p6 protein. Recently, we showed that p6 is a bona fide substrate of the insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease. This phenomenon appears to be specific for HIV-1, since p6 homologs of HIV-2, SIV and EIAV were IDE-insensitive. Furthermore, abrogation of the IDE-mediated degradation of p6 reduces the replication capacity of HIV-1 in an Env-dependent manner. However, it remained unclear to which extent the IDE mediated degradation is phylogenetically conserved among HIV-1. Here, we describe two HIV-1 isolates with IDE resistant p6 proteins. Sequence comparison allowed deducing one single amino acid regulating IDE sensitivity of p6. Exchanging the N-terminal leucine residue of p6 derived from the IDE sensitive isolate HIV-1NL4-3 with proline enhances its stability, while replacing Pro-1 of p6 from the IDE insensitive isolate SG3 with leucine restores susceptibility towards IDE. Phylogenetic analyses of this natural polymorphism revealed that the N-terminal leucine is characteristic for p6 derived from HIV-1 group M except for subtype A, which predominantly expresses p6 with an N-terminal proline. Consequently, p6 peptides derived from subtype A are not degraded by IDE. Thus, IDE mediated degradation of p6 is specific for HIV-1 group M isolates and not occasionally distributed among HIV-1.
Collapse
|
29
|
Potempa M, Lee SK, Kurt Yilmaz N, Nalivaika EA, Rogers A, Spielvogel E, Carter CW, Schiffer CA, Swanstrom R. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. J Mol Biol 2018; 430:5182-5195. [PMID: 30414407 DOI: 10.1016/j.jmb.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1' proline. A P1' proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2-P1/P1'-P2'), with two complementary sets of rules. When P1' is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2' amino acid interacts with a hydrophobic region of the S2' subsite. When P1' is not proline, the orientations of the P2 and P2' side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2' amino acid usually engages hydrophilic amino acids in the S2' subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2' subsites to accommodate the steric effects imposed by a P1' proline on the orientation of P2 and P2' substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sook-Kyung Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amy Rogers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
30
|
Su CTT, Kwoh CK, Verma CS, Gan SKE. Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. J Biomol Struct Dyn 2017; 36:4366-4377. [PMID: 29237328 DOI: 10.1080/07391102.2017.1417160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HIV polyprotein Gag is increasingly found to contribute to protease inhibitor resistance. Despite its role in viral maturation and in developing drug resistance, there remain gaps in the knowledge of the role of certain Gag subunits (e.g. p6), and that of non-cleavage mutations in drug resistance. As p6 is flexible, it poses a problem for structural experiments, and is hence often omitted in experimental Gag structural studies. Nonetheless, as p6 is an indispensable component for viral assembly and maturation, we have modeled the full length Gag structure based on several experimentally determined constraints and studied its structural dynamics. Our findings suggest that p6 can mechanistically modulate Gag conformations. In addition, the full length Gag model reveals that allosteric communication between the non-cleavage site mutations and the first Gag cleavage site could possibly result in protease drug resistance, particularly in the absence of mutations in Gag cleavage sites. Our study provides a mechanistic understanding to the structural dynamics of HIV-1 Gag, and also proposes p6 as a possible drug target in anti-HIV therapy.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Chee-Keong Kwoh
- b School of Computer Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| | - Chandra Shekhar Verma
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore
| | - Samuel Ken-En Gan
- a Bioinformatics Institute , Agency for Science, Technology, and Research (A*STAR) , Singapore 138671 , Singapore.,c p53 Laboratory , Agency for Science, Technology, and Research (A*STAR) , Singapore 138648 , Singapore
| |
Collapse
|
31
|
McGillewie L, Ramesh M, Soliman ME. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases. Protein J 2017; 36:385-396. [PMID: 28762197 DOI: 10.1007/s10930-017-9735-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Muthusamy Ramesh
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal (UKZN), Westville, Durban, 4001, South Africa.
| |
Collapse
|
32
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
33
|
Gag P2/NC and pol genetic diversity, polymorphism, and drug resistance mutations in HIV-1 CRF02_AG- and non-CRF02_AG-infected patients in Yaoundé, Cameroon. Sci Rep 2017; 7:14136. [PMID: 29074854 PMCID: PMC5658410 DOI: 10.1038/s41598-017-14095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
In HIV-1 subtype-B, specific mutations in Gag cleavage sites (CS) are associated with treatment failure, with limited knowledge among non-B subtypes. We analyzed non-B HIV-1 gag and pol (protease/reverse-transcriptase) sequences from Cameroonians for drug resistance mutations (DRMs) in the gag P2/NC CS, and pol major DRMs. Phylogeny of the 141 sequences revealed a high genetic diversity (12 subtypes): 67.37% CRF02_AG versus 32.6% non-CRF02_AG. Overall, 7.3% transmitted and 34.3% acquired DRMs were found, including M184V, thymidine analogue mutations (T215F, D67N, K70R, K219Q), NNRTIs (L100I, Y181C, K103N, V108I, Y188L), and PIs (V82L). Twelve subjects [10 with HIV-1 CRF02_AG, 8 treatment-naïve and 4 on 3TC-AZT-NVP] showed 3 to 4 mutations in the Gag P2/NC CS: S373Q/T/A, A374T/S/G/N, T375S/A/N/G, I376V, G381S, and R380K. Subjects with or without Gag P2/NC CS mutations showed no significant difference in viral loads. Treatment-naïve subjects harboring NRTI-DRMs had significantly lower CD4 cells than those with NRTI-DRMs on ART (p = 0.042). Interestingly, two subjects had major DRMs to NRTIs, NNRTIs, and 4 mutations in the Gag P2/NC CS. In this prevailing CRF02_AG population with little exposure to PIs (~3%), mutations in the Gag P2/NC CS could increase the risk of treatment failure if there is increased use of PIs-based therapy.
Collapse
|
34
|
Kletenkov K, Hoffmann D, Böni J, Yerly S, Aubert V, Schöni-Affolter F, Struck D, Verheyen J, Klimkait T. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors? J Antimicrob Chemother 2017; 72:866-875. [PMID: 27999036 DOI: 10.1093/jac/dkw493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Background HIV Gag mutations have been reported to confer PI drug resistance. However, clinical implications are still controversial and most current genotyping algorithms consider solely the protease gene for assessing PI resistance. Objectives Our goal was to describe for HIV infections in Switzerland the potential role of the C-terminus of Gag (NC-p6) in PI resistance. We aimed to characterize resistance-relevant mutational patterns in Gag and protease and their possible interactions. Methods Resistance information on plasma samples from 2004-12 was collected for patients treated by two diagnostic centres of the Swiss HIV Cohort Study. Sequence information on protease and the C-terminal Gag region was paired with the corresponding patient treatment history. The prevalence of Gag and protease mutations was analysed for PI treatment-experienced patients versus PI treatment-naive patients. In addition, we modelled multiple paths of an assumed ordered accumulation of genetic changes using random tree mixture models. Results More than half of all PI treatment-experienced patients in our sample set carried HIV variants with at least one of the known Gag mutations, and 17.9% (66/369) carried at least one Gag mutation for which a phenotypic proof of PI resistance by in vitro mutagenesis has been reported. We were able to identify several novel Gag mutations that are associated with PI exposure and therapy failure. Conclusions Our analysis confirmed the association of Gag mutations, well known and new, with PI exposure. This could have clinical implications, since the level of potential PI drug resistance might be underestimated.
Collapse
Affiliation(s)
- K Kletenkov
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - D Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - J Böni
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - S Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - V Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - F Schöni-Affolter
- Swiss HIV Cohort Study, Data Centre, Institute for Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - D Struck
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - J Verheyen
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - T Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | | |
Collapse
|
35
|
The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor-Resistant Clinical Isolates. J Acquir Immune Defic Syndr 2017; 75:52-60. [PMID: 28234686 PMCID: PMC5389583 DOI: 10.1097/qai.0000000000001304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Protease inhibitor (PI)-resistant HIV-1 isolates with primary substitutions in protease (PR) and secondary substitutions in Gag could potentially exhibit cross-resistance to maturation inhibitors. We evaluated the second-generation maturation inhibitor, GSK3532795, for activity toward clinical isolates with genotypic and phenotypic characteristics associated with PI resistance (longitudinal). Methods: Longitudinal clinical isolates from 15 PI-treated patients and 7 highly PI-resistant (nonlongitudinal) viruses containing major and minor PI resistance-associated mutations were evaluated for GSK3532795 sensitivity. Phenotypic sensitivity was determined using the PhenoSense Gag/PR assay (Monogram Biosciences) or in-house single- and multiple-cycle assays. Changes from baseline [CFB; ratio of post- to pre-treatment FC-IC50 (fold-change in IC50 versus wild-type virus)] <3 were considered to be within the no-effect level. Results: All nonlongitudinal viruses tested were sensitive to GSK3532795 (FC-IC50 range 0.16–0.68). Among longitudinal isolates, all post-PI treatment samples had major PI resistance-associated mutations in PR and 17/21 had PI resistance-associated changes in Gag. Nineteen of the 21 post-PI treatment samples had GSK3532795 CFB <3. Median (range) CFB was 0.83 (0.05–27.4) [Monogram (11 patients)] and 1.5 (1.0–2.2) [single-cycle (4 patients)]. The 2 post-PI treatment samples showing GSK3532795 CFB >3 (Monogram) were retested using single- and multiple-cycle assays. Neither sample had meaningful sensitivity changes in the multiple-cycle assay. Gag changes were not associated with an increased GSK3532795 CFB. Conclusions: GSK3532795 maintained antiviral activity against PI-resistant isolates with emergent PR and/or Gag mutations. This finding supports continued development of GSK3532795 in treatment-experienced patients with or without previous PI therapy.
Collapse
|
36
|
Codoñer FM, Peña R, Blanch-Lombarte O, Jimenez-Moyano E, Pino M, Vollbrecht T, Clotet B, Martinez-Picado J, Draenert R, Prado JG. Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors. Sci Rep 2017. [PMID: 28623276 PMCID: PMC5473930 DOI: 10.1038/s41598-017-03260-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite the major role of Gag in establishing resistance of HIV-1 to protease inhibitors (PIs), very limited data are available on the total contribution of Gag residues to resistance to PIs. To identify in detail Gag residues and structural interfaces associated with the development of HIV-1 resistance to PIs, we traced viral evolution under the pressure of PIs using Gag-protease single genome sequencing and coevolution analysis of protein sequences in 4 patients treated with PIs over a 9-year period. We identified a total of 38 Gag residues correlated with the protease, 32 of which were outside Gag cleavage sites. These residues were distributed in 23 Gag-protease groups of coevolution, with the viral matrix and the capsid represented in 87% and 52% of the groups. In addition, we uncovered the distribution of Gag correlated residues in specific protein surfaces of the inner face of the viral matrix and at the Cyclophilin A binding loop of the capsid. In summary, our findings suggest a tight interdependency between Gag structural proteins and the protease during the development of resistance of HIV-1 to PIs.
Collapse
Affiliation(s)
- Francisco M Codoñer
- Lifesequencing SL, Paterna, Spain.,Universidad Catolica de Valencia, Valencia, Spain
| | - Ruth Peña
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Oscar Blanch-Lombarte
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Esther Jimenez-Moyano
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pino
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Thomas Vollbrecht
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,University of California San Diego, La Jolla, California, USA
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rika Draenert
- Medizinische Poliklinik, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
37
|
Titanji BK, Pillay D, Jolly C. Combination antiretroviral therapy and cell-cell spread of wild-type and drug-resistant human immunodeficiency virus-1. J Gen Virol 2017; 98:821-834. [PMID: 28141491 PMCID: PMC5657029 DOI: 10.1099/jgv.0.000728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) disseminates between T cells either by cell-free infection or by highly efficient direct cell–cell spread. The high local multiplicity that characterizes cell–cell infection causes variability in the effectiveness of antiretroviral drugs applied as single agents. Whereas protease inhibitors (PIs) are effective inhibitors of HIV-1 cell–cell and cell-free infection, some reverse transcriptase inhibitors (RTIs) show reduced potency; however, antiretrovirals are not administered as single agents and are used clinically as combination antiretroviral therapy (cART). Here we explored the efficacy of PI- and RTI-based cART against cell–cell spread of wild-type and drug-resistant HIV-1 strains. Using a quantitative assay to measure cell–cell spread of HIV-1 between T cells, we evaluated the efficacy of different clinically relevant drug combinations. We show that combining PIs and RTIs improves the potency of inhibition of HIV-1 and effectively blocks both cell-free and cell–cell spread. Combining drugs that alone are poor inhibitors of cell–cell spread markedly improves HIV-1 inhibition, demonstrating that clinically relevant combinations of ART can inhibit this mode of HIV-1 spread. Furthermore, comparison of wild-type and drug-resistant viruses reveals that PI- and RTI-resistant viruses have a replicative advantage over wild-type virus when spreading by cell–cell means in the presence of cART, suggesting that in the context of inadequate drug combinations or drug resistance, cell–cell spread could potentially allow for ongoing viral replication.
Collapse
Affiliation(s)
- Boghuma Kabisen Titanji
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.,Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK.,Africa Centre for Health and Population Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
38
|
Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing. PLoS One 2017; 12:e0170420. [PMID: 28107423 PMCID: PMC5249062 DOI: 10.1371/journal.pone.0170420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
The usefulness of ultra-deep pyrosequencing (UDPS) for the diagnosis of HIV-1 drug resistance (DR) remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF) 07_BC among injection drug users (IDUs) in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004–2005) and 3 from late epidemic (collected in 2008) were obtained from treatment-naïve patient’s peripheral blood mononuclear cells. Viral RNA was extracted directly from patient’s plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay) and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs) (4.4–47.3 fold). Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.
Collapse
|
39
|
Su CTT, Ling WL, Lua WH, Haw YX, Gan SKE. Structural analyses of 2015-updated drug-resistant mutations in HIV-1 protease: an implication of protease inhibitor cross-resistance. BMC Bioinformatics 2016; 17:500. [PMID: 28155724 PMCID: PMC5259968 DOI: 10.1186/s12859-016-1372-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Strategies to control HIV for improving the quality of patient lives have been aided by the Highly Active Anti-Retroviral Therapy (HAART), which consists of a cocktail of inhibitors targeting key viral enzymes. Numerous new drugs have been developed over the past few decades but viral resistances to these drugs in the targeted viral enzymes are increasingly reported. Nonetheless the acquired mutations often reduce viral fitness and infectivity. Viral compensatory secondary-line mutations mitigate this loss of fitness, equipping the virus with a broad spectrum of resistance against these drugs. While structural understanding of the viral protease and its drug resistance mutations have been well established, the interconnectivity and development of structural cross-resistance remain unclear. This paper reports the structural analyses of recent clinical mutations on the drug cross-resistance effects from various protease and protease inhibitors (PIs) complexes. Methods Using the 2015 updated clinical HIV protease mutations, we constructed a structure-based correlation network and a minimum-spanning tree (MST) based on the following features: (i) topology of the PI-binding pocket, (ii) allosteric effects of the mutations, and (iii) protease structural stability. Results and conclusion Analyis of the network and the MST of dominant mutations conferring resistance to the seven PIs (Atazanavir-ATV, Darunavir-DRV, Indinavir-IDV, Lopinavir-LPV, Nelfinavir-NFV, Saquinavir-SQV, and Tipranavir-TPV) showed that cross-resistance can develop easily across NFV, SQV, LPV, IDV, and DRV, but not for ATV or TPV. Through estimation of the changes in vibrational entropies caused by each reported mutation, some secondary mutations were found to destabilize protease structure. Our findings provide an insight into the mechanism of PI cross-resistance and may also be useful in guiding the selection of PI in clinical treatment to delay the onset of cross drug resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1372-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chinh Tran-To Su
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.
| | - Wei-Li Ling
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Wai-Heng Lua
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yu-Xuan Haw
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore. .,p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore.
| |
Collapse
|
40
|
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol 2016; 24:547-557. [PMID: 27090931 DOI: 10.1016/j.tim.2016.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design.
Collapse
Affiliation(s)
- Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy. Antimicrob Agents Chemother 2016; 60:2248-56. [PMID: 26833162 DOI: 10.1128/aac.02682-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022] Open
Abstract
Protease inhibitors (PIs) are used as a first-line regimen in HIV-1-infected children. Here we investigated the phenotypic consequences of amino acid changes in Gag and protease on lopinavir (LPV) and ritonavir (RTV) susceptibility among pediatric patients failing PI therapy. The Gag-protease from isolates from 20 HIV-1 subtype C-infected pediatric patients failing an LPV and/or RTV-based regimen was phenotyped using a nonreplicativein vitroassay. Changes in sensitivity to LPV and RTV relative to that of the matched baseline (pretherapy) sample were calculated. Gag and protease amino acid substitutions associated with PI failure were created in a reference clone by site-directed mutagenesis and assessed. Predicted phenotypes were determined using the Stanford drug resistance algorithm. Phenotypic resistance or reduced susceptibility to RTV and/or LPV was observed in isolates from 10 (50%) patients, all of whom had been treated with RTV. In most cases, this was associated with protease resistance mutations, but substitutions at Gag cleavage and noncleavage sites were also detected. Gag amino acid substitutions were also found in isolates from three patients with reduced drug susceptibilities who had wild-type protease. Site-directed mutagenesis confirmed that some amino acid changes in Gag contributed to PI resistance but only in the presence of major protease resistance-associated substitutions. The isolates from all patients who received LPV exclusively were phenotypically susceptible. Baseline isolates from the 20 patients showed a large (47-fold) range in the 50% effective concentration of LPV, which accounted for most of the discordance seen between the experimentally determined and the predicted phenotypes. Overall, the inclusion of thegaggene and the use of matched baseline samples provided a more comprehensive assessment of the effect of PI-induced amino acid changes on PI resistance. The lack of phenotypic resistance to LPV supports the continued use of this drug in pediatric patients.
Collapse
|
42
|
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. J Virol 2015; 90:768-79. [PMID: 26512081 DOI: 10.1128/jvi.01640-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
Collapse
|
43
|
Sutherland KA, Parry CM, McCormick A, Kapaata A, Lyagoba F, Kaleebu P, Gilks CF, Goodall R, Spyer M, Kityo C, Pillay D, Gupta RK. Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial. PLoS One 2015; 10:e0137834. [PMID: 26382239 PMCID: PMC4575205 DOI: 10.1371/journal.pone.0137834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
Background Major protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs. Methods Samples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain. Results We cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure. Conclusions Here we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic determinants of protease inhibitor failure in those who fail without traditional resistance mutations whilst PI use is being scaled up globally.
Collapse
Affiliation(s)
| | - Chris M. Parry
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Anne Kapaata
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Fred Lyagoba
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Pontiano Kaleebu
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Charles F. Gilks
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Ruth Goodall
- MRC Clinical Trials Unit at UCL, London, United Kingdom
| | - Moira Spyer
- MRC Clinical Trials Unit at UCL, London, United Kingdom
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Deenan Pillay
- University College London, London, United Kingdom
- Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu Natal, Mtubatuba, South Africa
- * E-mail: (DP); (RKG)
| | - Ravindra K. Gupta
- University College London, London, United Kingdom
- * E-mail: (DP); (RKG)
| | | |
Collapse
|
44
|
Giandhari J, Basson AE, Coovadia A, Kuhn L, Abrams EJ, Strehlau R, Morris L, Hunt GM. Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients. AIDS Res Hum Retroviruses 2015; 31:776-82. [PMID: 25919760 DOI: 10.1089/aid.2014.0349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Studies have shown a low frequency of HIV-1 protease drug resistance mutations in patients failing protease inhibitor (PI)-based therapy. Recent studies have identified mutations in Gag as an alternate pathway for PI drug resistance in subtype B viruses. We therefore genotyped the Gag and protease genes from 20 HIV-1 subtype C-infected pediatric patients failing a PI-based regimen. Major protease resistance mutations (M46I, I54V, and V82A) were identified in eight (40%) patients, as well as Gag cleavage site (CS) mutations (at codons 373, 374, 378, 428, 431, 449, 451, and 453) in nine (45%) patients. Four of these Gag CS mutations occurred in the absence of major protease mutations at PI failure. In addition, amino acid changes were noted at Gag non-CS with some predicted to be under HLA/KIR immune-mediated pressure and/or drug selection pressure. Changes in Gag during PI failure therefore warrant further investigation of the Gag gene and its role in PI failure in HIV-1 subtype C infection.
Collapse
Affiliation(s)
- Jennifer Giandhari
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Adriaan E. Basson
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ashraf Coovadia
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Elaine J. Abrams
- International Center for AIDS Programs, Mailman School of Public Health, Columbia University, New York, New York
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Gillian M. Hunt
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
45
|
Subtype-independent near full-length HIV-1 genome sequencing and assembly to be used in large molecular epidemiological studies and clinical management. J Int AIDS Soc 2015; 18:20035. [PMID: 26115688 PMCID: PMC4482814 DOI: 10.7448/ias.18.1.20035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/08/2015] [Accepted: 06/01/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction HIV-1 near full-length genome (HIV-NFLG) sequencing from plasma is an attractive multidimensional tool to apply in large-scale population-based molecular epidemiological studies. It also enables genotypic resistance testing (GRT) for all drug target sites allowing effective intervention strategies for control and prevention in high-risk population groups. Thus, the main objective of this study was to develop a simplified subtype-independent, cost- and labour-efficient HIV-NFLG protocol that can be used in clinical management as well as in molecular epidemiological studies. Methods Plasma samples (n=30) were obtained from HIV-1B (n=10), HIV-1C (n=10), CRF01_AE (n=5) and CRF01_AG (n=5) infected individuals with minimum viral load >1120 copies/ml. The amplification was performed with two large amplicons of 5.5 kb and 3.7 kb, sequenced with 17 primers to obtain HIV-NFLG. GRT was validated against ViroSeq™ HIV-1 Genotyping System. Results After excluding four plasma samples with low-quality RNA, a total of 26 samples were attempted. Among them, NFLG was obtained from 24 (92%) samples with the lowest viral load being 3000 copies/ml. High (>99%) concordance was observed between HIV-NFLG and ViroSeq™ when determining the drug resistance mutations (DRMs). The N384I connection mutation was additionally detected by NFLG in two samples. Conclusions Our high efficiency subtype-independent HIV-NFLG is a simple and promising approach to be used in large-scale molecular epidemiological studies. It will facilitate the understanding of the HIV-1 pandemic population dynamics and outline effective intervention strategies. Furthermore, it can potentially be applicable in clinical management of drug resistance by evaluating DRMs against all available antiretrovirals in a single assay.
Collapse
|
46
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
47
|
Gag drug resistance mutations in HIV-1 subtype C patients, failing a protease inhibitor inclusive treatment regimen, with detectable lopinavir levels. J Int AIDS Soc 2014; 17:19784. [PMID: 25397528 PMCID: PMC4225273 DOI: 10.7448/ias.17.4.19784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of antiretroviral (ARV) drugs and their use in human immunodeficiency virus type 1 (HIV-1) has led to the effective control of HIV replication in infected patients. However the emergence of resistant HIV-1 strains still remains a problem. Literature has shown that mutations may accumulate in the protease (PR) and gag regions of HIV-1 patients who fail therapy with protease inhibitor (PI) drugs [1, 2]. Gag mutations have also been found to play an important role in the evolution of PI resistance [2]. Despite this, the standard genotypic drug-resistance test examines mutations in the reverse transcriptase (RT) and PR region of HIV-1 and not gag [3]. This study investigated the frequency of gag drug resistance mutations in the absence of major PI mutations in HIV-1 subtype C patients, failing a PI inclusive treatment regimen. Sixty-eight samples were retrieved from patients that were classified as second line treatment failures as they had a viral load greater than 1000 copies\mL, as well as detectable lopinavir (LPV) levels. The gag and protease region of these patients were genotyped. Mutations in the gag and protease region were assessed using the REga Db sequencing tool and the CPR programme on the Stanford University HIV drug resistance database. The mean LPV level of these samples was 11.66 µg/mL. 69.11% (n=46) of the patients have no major PI mutations in protease. The following mutations that are associated with PI exposure were present in the data set: G62R (n=6), H219Q (n=11), S737T (n=8), I389T (n=8) and Q474L (n=7). Predictably, mutations that are associated with PI resistance were found, which are generally located in the p7/p1 and p1/p6 cleavage site. These mutations are K436R (n=4), I437V (n=1), L449P (n=5), R452K (n=4) and P453L\T (n=9). These results contribute to the knowledge of resistance mutations in gag and their impact on PI resistance.
Collapse
|
48
|
International Congress of Drug Therapy in HIV Infection 2-6 November 2014, Glasgow, UK. J Int AIDS Soc 2014. [DOI: 10.7448/ias.17.4.19856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
49
|
Structural basis and distal effects of Gag substrate coevolution in drug resistance to HIV-1 protease. Proc Natl Acad Sci U S A 2014; 111:15993-8. [PMID: 25355911 DOI: 10.1073/pnas.1414063111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug resistance mutations in response to HIV-1 protease inhibitors are selected not only in the drug target but elsewhere in the viral genome, especially at the protease cleavage sites in the precursor protein Gag. To understand the molecular basis of this protease-substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease-substrate interactions reveal that compensatory coevolved mutations in the substrate do not restore interactions lost due to protease mutations, but instead establish other interactions that are not restricted to the site of mutation. Mutation of a substrate residue has distal effects on other residues' interactions as well, including through the induction of a conformational change in the protease. Additionally, molecular dynamics simulations suggest that restoration of active site dynamics is an additional constraint in the selection of coevolved mutations. Hence, protease-substrate coevolution permits mutational, structural, and dynamic changes via molecular mechanisms that involve distal effects contributing to drug resistance.
Collapse
|
50
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|