1
|
Haase JA, Marzi A. Molecular virulence determinants of human-pathogenic filoviruses. Adv Virus Res 2025; 121:1-29. [PMID: 40379380 DOI: 10.1016/bs.aivir.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
The Filoviridae family encompasses Ebola virus (EBOV) and Marburg virus (MARV), some of the most lethal viruses known to cause sporadic, recurring outbreaks of severe hemorrhagic fever mainly throughout central Africa. However, other lesser-known viruses also belong to the filovirus family as they are closely related, such as Bundibugyo, Reston and Taï Forest virus. These viruses differ in their virulence in humans significantly: while EBOV and MARV show lethality in humans of up to 90 %, Reston virus appears to be avirulent in humans. Here, underlying molecular factors leading to differences in virulence via changes in filovirus entry, replication and immune evasion strategies are summarized and assessed. While the filovirus glycoprotein contributes towards virulence by facilitating entry into a wide variety of tissues, differences in virus-host interactions and replication efficacies lead to measurable variances of progeny virus production. Additionally, immune evasion strategies lead to alterations in replication efficacy thus changing who has the upper hand between the virus and the host. Understanding and unraveling the contributions of these molecular determinants on filovirus virulence provide insights into the processes causing the underlying pathogenesis. It will further help to assess the pathogenicity of newly discovered filoviruses. Finally, these molecular determinants and processes present attractive targets for therapeutic intervention and development of novel antiviral countermeasures.
Collapse
Affiliation(s)
- Jil A Haase
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States.
| |
Collapse
|
2
|
Neupane R, Malla S, Karthikeyan C, Asbhy CR, Boddu SHS, Jayachandra Babu R, Tiwari AK. Endocytic highways: Navigating macropinocytosis and other endocytic routes for precision drug delivery. Int J Pharm 2025; 673:125356. [PMID: 39956408 DOI: 10.1016/j.ijpharm.2025.125356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Chandrabose Karthikeyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India
| | - Charles R Asbhy
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY 10049, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, AL 36849, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
3
|
Zhao M, Li Q, Chai Y, Rong R, He L, Zhang Y, Cui H, Xu H, Zhang X, Wang Z, Yuan S, Chen M, He C, Zhang H, Qin L, Hu R, Zhang X, Zhuang W, Li B. An anti-CD19-exosome delivery system navigates the blood-brain barrier for targeting of central nervous system lymphoma. J Nanobiotechnology 2025; 23:173. [PMID: 40045315 PMCID: PMC11881385 DOI: 10.1186/s12951-025-03238-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND High-dose methotrexate (HD-MTX) serves as the cornerstone of central nervous system lymphoma (CNSL) treatment, but its efficacy is limited due to low blood-brain barrier (BBB) penetration and adverse effects. This study is focused on an exosome-based drug delivery approach aimed at enhancing BBB permeability, thereby reducing the required dosage of methotrexate (MTX) while ensuring specific targeting of CNSL. METHODS Human adipose-derived mesenchymal stem cells (hAMSCs) were modified with a lentiviral vector encoding anti-CD19, incorporated into exosomes characterized by colloidal gold immunoelectron microscopy and Nano flow cytometry. MTX loaded into anti-CD19-Exos via co-incubation, assessed for loading and encapsulation efficiencies using HPLC. In vitro BBB model constructed using hCMEC/D3 and astrocytes to investigate BBB permeability. In vivo efficacy of anti-CD19-Exo-MTX evaluated in intracranial CNSL models using MRI. Biodistribution tracked with DiR-labeled exosomes, drug concentration in CSF measured by HPLC. LC-MS/MS identified and characterized exosomal proteins analyzed using GO Analysis. Neuroprotective effects of exosomal proteins assessed with TUNEL and Nissl staining on hippocampal neurons in CNSL models. Liver and kidney pathology, blood biochemical markers, and complete blood count evaluated exosomal protein effects on organ protection and MTX-induced myelosuppression. RESULTS We generated anti-CD19-Exo derived from hAMSCs. These adapted exosomes effectively encapsulated MTX, enhancing drug accessibility within lymphoma cells and sustained intracellular accumulation over an extended period. Notably, anti-CD19-Exo-MTX interacted with cerebrovascular endothelial cells and astrocytes of the BBB, leading to endocytosis and facilitating the transportation of MTX across the barrier. Anti-CD19-Exo-MTX outperformed free MTX in vitro, exhibiting a more potent lymphoma-suppressive effect (P < 0.05). In intracranial orthotopic CNSL models, anti-CD19-Exo-MTX exhibited a significantly reduced disease burden compared to both the MTX and Exo-MTX groups, along with prolonged overall survival (P < 0.05). CSF drug concentration analysis demonstrated enhanced stability and longer-lasting drug levels for anti-CD19-Exo-MTX. Anti-CD19-Exo-MTX exhibited precise CNSL targeting with no organ toxicity. Notably, our study highlighted the functional potential of reversal effect of hAMSCs-exosomes on MTX-induced neurotoxicity, hepatic and renal impairment, and myelosuppression. CONCLUSIONS We present anti-CD19-Exo-MTX as a promising exosome-based drug delivery platform that enhances BBB permeability and offers specific targeting for effective CNSL treatment with reduced adverse effects.
Collapse
Affiliation(s)
- Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Yali Chai
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Rong Rong
- Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lexin He
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hongxia Cui
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Zhiming Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Menglu Chen
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Han Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Linlin Qin
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Ruijing Hu
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Xinyuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China.
| |
Collapse
|
4
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Gulyamov S, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application. Arch Microbiol 2025; 207:74. [PMID: 40025302 DOI: 10.1007/s00203-025-04277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV's genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV's seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Surat Gulyamov
- Department of Dentistry and Pediatric Dentistry, Tashkent Pediatric Medical Institute, Bogishamol Street 223, 100140, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
5
|
Bu F, Ye G, Turner-Hubbard H, Herbst M, Liu B, Li F. Cryo-EM structure of Sudan ebolavirus glycoprotein complexed with its human endosomal receptor NPC1. Commun Biol 2025; 8:156. [PMID: 39894818 PMCID: PMC11788421 DOI: 10.1038/s42003-025-07613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Sudan ebolavirus (SUDV), like Ebola ebolavirus (EBOV), poses a significant threat to global health and security due to its high lethality. However, unlike EBOV, there are no approved vaccines or treatments for SUDV, and its structural interaction with the endosomal receptor NPC1 remains unclear. This study compares the glycoproteins of SUDV and EBOV (in their proteolytically primed forms) and their binding to human NPC1 (hNPC1). The findings reveal that the SUDV glycoprotein binds significantly more strongly to hNPC1 than the EBOV glycoprotein. Using cryo-EM, we determined the structure of the SUDV glycoprotein/hNPC1 complex, identifying four key residues in the SUDV glycoprotein that differ from those in the EBOV glycoprotein and influence hNPC1 binding: Ile79, Ala141, and Pro148 enhance binding, while Gln142 reduces it. Collectively, these residue differences account for SUDV's stronger binding affinity for hNPC1. This study provides critical insights into receptor recognition across all viruses in the ebolavirus genus, including their interactions with receptors in bats, their suspected reservoir hosts. These findings advance our understanding of ebolavirus cell entry, tissue tropism, and host range.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN, USA
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN, USA
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN, USA
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN, USA
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, MN, USA.
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA.
- Center for Emerging Viruses, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Wang LL, Seravalli J, Eaton B, Liu Y, Holbrook MR, Lan WJ, Xiang SH. Identification of Filovirus Entry Inhibitors from Marine Fungus-Derived Indole Alkaloids. Mar Drugs 2025; 23:23. [PMID: 39852525 PMCID: PMC11766795 DOI: 10.3390/md23010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Filoviruses, mainly consisting of the two genera of Ebolavirus and Marburgvirus, are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection. Thus, it is suggested that marine indole alkaloids can be a valuable compound source for filovirus drug screening and development. Since marine indole alkaloids comprise a large diverse group of secondary metabolites, their biological properties would be helpful for pharmaceutical drug development to treat various filovirus infections.
Collapse
Affiliation(s)
- Leah Liu Wang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Javier Seravalli
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Yi Liu
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael R. Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
7
|
Li W, Yang W, Liu X, Zhou W, Wang S, Wang Z, Zhao Y, Feng N, Wang T, Wu M, Ge L, Xia X, Yan F. Fully human monoclonal antibodies against Ebola virus possess complete protection in a hamster model. Emerg Microbes Infect 2024; 13:2392651. [PMID: 39155772 PMCID: PMC11348817 DOI: 10.1080/22221751.2024.2392651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.
Collapse
Affiliation(s)
- Wujian Li
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Wanying Yang
- Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Wujie Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
8
|
Bu F, Ye G, Morsheimer K, Mendoza A, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Eaton B, Anantpadma M, Yang G, Liu B, Davey R, Li F. Discovery of Nanosota-EB1 and -EB2 as Novel Nanobody Inhibitors Against Ebola Virus Infection. PLoS Pathog 2024; 20:e1012817. [PMID: 39715280 PMCID: PMC11723632 DOI: 10.1371/journal.ppat.1012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP). Cryo-EM and biochemical data revealed that Nanosota-EB1 binds to the glycan cap of GP1, preventing its protease cleavage, while Nanosota-EB2 binds to critical membrane-fusion elements in GP2, stabilizing it in the pre-fusion state. Nanosota-EB2 is a potent neutralizer of EBOV infection in vitro and offers excellent protection in a mouse model of EBOV challenge, while Nanosota-EB1 provides moderate neutralization and protection. Nanosota-EB1 and Nanosota-EB2 are the first nanobodies shown to inhibit authentic EBOV. Combined with our newly developed structure-guided in vitro evolution approach, they lay the foundation for nanobody-based therapies against EBOV and other viruses within the ebolavirus genus.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kimberly Morsheimer
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Manu Anantpadma
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Robert Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
9
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
10
|
Chao X, Yang Y, Gong W, Zou S, Tu H, Li D, Feng W, Cai H. Leep2A and Leep2B function as a RasGAP complex to regulate macropinosome formation. J Cell Biol 2024; 223:e202401110. [PMID: 38888895 PMCID: PMC11187982 DOI: 10.1083/jcb.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.
Collapse
Affiliation(s)
- Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Bestle D, Bittel L, Werner AD, Kämper L, Dolnik O, Krähling V, Steinmetzer T, Böttcher-Friebertshäuser E. Novel proteolytic activation of Ebolavirus glycoprotein GP by TMPRSS2 and cathepsin L at an uncharted position can compensate for furin cleavage. Virus Res 2024; 347:199430. [PMID: 38964470 PMCID: PMC11294727 DOI: 10.1016/j.virusres.2024.199430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.
Collapse
Affiliation(s)
- Dorothea Bestle
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Linda Bittel
- Institute of Virology, Philipps-University, Marburg, Germany
| | | | - Lennart Kämper
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps-University, Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps-University, Marburg, Germany; German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | | | | |
Collapse
|
12
|
Durante D, Bott R, Cooper L, Owen C, Morsheimer KM, Patten J, Zielinski C, Peet NP, Davey RA, Gaisina IN, Rong L, Moore TW. N-Substituted Pyrrole-Based Heterocycles as Broad-Spectrum Filoviral Entry Inhibitors. J Med Chem 2024; 67:13737-13764. [PMID: 39169825 PMCID: PMC11812679 DOI: 10.1021/acs.jmedchem.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.
Collapse
Affiliation(s)
- Destiny Durante
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
| | - Callum Owen
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Kimberly M. Morsheimer
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - J.J. Patten
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Christian Zielinski
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Norton P. Peet
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
| | - Robert A. Davey
- Department of Virology, Immunology, and Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston, MA 02118, United States
| | - Irina N. Gaisina
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
- UICentre: Drug Discovery, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, United States
- Chicago BioSolutions Inc., Chicago, IL 60612, United States
| | - Terry W. Moore
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, United States
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL 60612, United States
| |
Collapse
|
13
|
Gong M, Peng C, Yang C, Wang Z, Qian H, Hu X, Zhou P, Shan C, Ding Q. Genome-wide CRISPR/Cas9 screen identifies SLC39A9 and PIK3C3 as crucial entry factors for Ebola virus infection. PLoS Pathog 2024; 20:e1012444. [PMID: 39173055 PMCID: PMC11341029 DOI: 10.1371/journal.ppat.1012444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Wang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Ilinykh PA, Huang K, Gunn BM, Kuzmina NA, Kedarinath K, Jurado-Cobena E, Zhou F, Subramani C, Hyde MA, Velazquez JV, Williamson LE, Gilchuk P, Carnahan RH, Alter G, Crowe JE, Bukreyev A. Antibodies targeting the glycan cap of Ebola virus glycoprotein are potent inducers of the complement system. Commun Biol 2024; 7:871. [PMID: 39020082 PMCID: PMC11255267 DOI: 10.1038/s42003-024-06556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.
Collapse
Affiliation(s)
- Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kritika Kedarinath
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Eduardo Jurado-Cobena
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Fuchun Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | | | - Jalene V Velazquez
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
15
|
Kalita E, Panda M, Rao A, Pandey RK, Prajapati VK. Viral mimicry and endocrine system: Divulging the importance in host-microbial crosstalk. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:421-436. [PMID: 39059993 DOI: 10.1016/bs.apcsb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.
Collapse
Affiliation(s)
- Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Mamta Panda
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf Martinistraße, Hamburg, Germany
| | - Abhishek Rao
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
16
|
Huang M, Li Y, Li Y, Liu S. C-Terminal Binding Protein: Regulator between Viral Infection and Tumorigenesis. Viruses 2024; 16:988. [PMID: 38932279 PMCID: PMC11209466 DOI: 10.3390/v16060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
C-terminal binding protein (CtBP), a transcriptional co-repressor, significantly influences cellular signaling, impacting various biological processes including cell proliferation, differentiation, apoptosis, and immune responses. The CtBP family comprises two highly conserved proteins, CtBP1 and CtBP2, which have been shown to play critical roles in both tumorigenesis and the regulation of viral infections. Elevated CtBP expression is noted in various tumor tissues, promoting tumorigenesis, invasiveness, and metastasis through multiple pathways. Additionally, CtBP's role in viral infections varies, exhibiting differing or even opposing effects depending on the virus. This review synthesizes the advances in CtBP's function research in viral infections and virus-associated tumorigenesis, offering new insights into potential antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Meihui Huang
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yucong Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yuxiao Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Shuiping Liu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
17
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
18
|
Motsa BB, Sharma T, Cioffi MD, Chapagain PP, Stahelin RV. Minor electrostatic changes robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. J Biol Chem 2024; 300:107213. [PMID: 38522519 PMCID: PMC11061732 DOI: 10.1016/j.jbc.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus, which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work, we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane-binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine and phosphatidylinositol 4,5-bisphosphate in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles. In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together, our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Michael D Cioffi
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
19
|
Cárdenas M, Michelson S, Galleguillos C, Vásquez-Martínez Y, Cortez-San Martin M. Modulation of infectious Salmon Anaemia virus infection by clathrin-mediated endocytosis and macropinocytosis inhibitors. Res Vet Sci 2024; 171:105223. [PMID: 38520841 DOI: 10.1016/j.rvsc.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.
Collapse
Affiliation(s)
- Matías Cárdenas
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sofía Michelson
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Claudia Galleguillos
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Medicine School, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Iyer K, Yan Z, Ross SR. Entry inhibitors as arenavirus antivirals. Front Microbiol 2024; 15:1382953. [PMID: 38650890 PMCID: PMC11033450 DOI: 10.3389/fmicb.2024.1382953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Arenaviruses belonging to the Arenaviridae family, genus mammarenavirus, are enveloped, single-stranded RNA viruses primarily found in rodent species, that cause severe hemorrhagic fever in humans. With high mortality rates and limited treatment options, the search for effective antivirals is imperative. Current treatments, notably ribavirin and other nucleoside inhibitors, are only partially effective and have significant side effects. The high lethality and lack of treatment, coupled with the absence of vaccines for all but Junín virus, has led to the classification of these viruses as Category A pathogens by the Centers for Disease Control (CDC). This review focuses on entry inhibitors as potential therapeutics against mammarenaviruses, which include both New World and Old World arenaviruses. Various entry inhibition strategies, including small molecule inhibitors and neutralizing antibodies, have been explored through high throughput screening, genome-wide studies, and drug repurposing. Notable progress has been made in identifying molecules that target receptor binding, internalization, or fusion steps. Despite promising preclinical results, the translation of entry inhibitors to approved human therapeutics has faced challenges. Many have only been tested in in vitro or animal models, and a number of candidates showed efficacy only against specific arenaviruses, limiting their broader applicability. The widespread existence of arenaviruses in various rodent species and their potential for their zoonotic transmission also underscores the need for rapid development and deployment of successful pan-arenavirus therapeutics. The diverse pool of candidate molecules in the pipeline provides hope for the eventual discovery of a broadly effective arenavirus antiviral.
Collapse
Affiliation(s)
| | | | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois, College of Medicine, Chicago, IL, United States
| |
Collapse
|
21
|
Zhang Y, Zhang M, Wu H, Wang X, Zheng H, Feng J, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Shi Y, Feng J, Chen G. A novel MARV glycoprotein-specific antibody with potentials of broad-spectrum neutralization to filovirus. eLife 2024; 12:RP91181. [PMID: 38526940 PMCID: PMC10963030 DOI: 10.7554/elife.91181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinwei Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Hang Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Junjuan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
22
|
Hao Y, Yang Y, Tu H, Guo Z, Chen P, Chao X, Yuan Y, Wang Z, Miao X, Zou S, Li D, Yang Y, Wu C, Li B, Li L, Cai H. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell 2024; 59:645-660.e8. [PMID: 38325371 DOI: 10.1016/j.devcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Yazhou Hao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Tu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pengcheng Chen
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Yuan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimeng Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilin Miao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Congying Wu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:e93-e105. [PMID: 37722397 DOI: 10.1016/s1473-3099(23)00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/20/2023]
Abstract
There have been significant advances in the prevention and management of Ebola virus disease (EVD) caused by Zaire Ebola virus (ZEBOV), including the development of two effective vaccines, rVSV-ZEBOV and Ad26.ZEBOV/MVA-BN-Filo. In addition, ZEBOV monoclonal antibodies have become first-line therapy for EVD. However, the 2022-23 outbreak of Sudan Ebola virus (SUDV) in Uganda has highlighted the gap in current therapies and vaccines, whose efficacy is uncertain against non-ZEBOV species. Health-care and laboratory staff working in EVD treatment centres or Ebola virus diagnostic and research laboratories face unique risks relating to potential occupational exposure to Ebola viruses. Given the substantial morbidity and mortality associated with EVD, facilities should have strategies in place to manage occupational exposures, including consideration of post-exposure therapies. In this Review, we discuss currently available evidence for prevention and post-exposure prophylaxis of EVD, including therapies currently under evaluation for SUDV.
Collapse
Affiliation(s)
- Michael A Moso
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCarthy
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Motsa BB, Sharma T, Chapagain PP, Stahelin RV. Minor changes in electrostatics robustly increase VP40 membrane binding, assembly, and budding of Ebola virus matrix protein derived virus-like particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578092. [PMID: 38352396 PMCID: PMC10862912 DOI: 10.1101/2024.01.30.578092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ebola virus (EBOV) is a filamentous negative-sense RNA virus which causes severe hemorrhagic fever. There are limited vaccines or therapeutics for prevention and treatment of EBOV, so it is important to get a detailed understanding of the virus lifecycle to illuminate new drug targets. EBOV encodes for the matrix protein, VP40, which regulates assembly and budding of new virions from the inner leaflet of the host cell plasma membrane (PM). In this work we determine the effects of VP40 mutations altering electrostatics on PM interactions and subsequent budding. VP40 mutations that modify surface electrostatics affect viral assembly and budding by altering VP40 membrane binding capabilities. Mutations that increase VP40 net positive charge by one (e.g., Gly to Arg or Asp to Ala) increase VP40 affinity for phosphatidylserine (PS) and PI(4,5)P2 in the host cell PM. This increased affinity enhances PM association and budding efficiency leading to more effective formation of virus-like particles (VLPs). In contrast, mutations that decrease net positive charge by one (e.g., Gly to Asp) lead to a decrease in assembly and budding because of decreased interactions with the anionic PM. Taken together our results highlight the sensitivity of slight electrostatic changes on the VP40 surface for assembly and budding. Understanding the effects of single amino acid substitutions on viral budding and assembly will be useful for explaining changes in the infectivity and virulence of different EBOV strains, VP40 variants that occur in nature, and for long-term drug discovery endeavors aimed at EBOV assembly and budding.
Collapse
Affiliation(s)
- Balindile B. Motsa
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Tej Sharma
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Chen H, Zhao P, Zhang C, Ming X, Zhang C, Jung YS, Qian Y. Veratramine inhibits porcine epidemic diarrhea virus entry through macropinocytosis by suppressing PI3K/Akt pathway. Virus Res 2024; 339:199260. [PMID: 37923169 PMCID: PMC10661853 DOI: 10.1016/j.virusres.2023.199260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by α-coronavirus porcine epidemic diarrhea virus (PEDV). At present, no effective vaccine is available to prevent the disease. Therefore, research for novel antivirals is important. This study aimed to identify the antiviral mechanism of Veratramine (VAM), which actively inhibits PEDV replication with a 50 % inhibitory concentration (IC50) of ∼5 µM. Upon VAM treatment, both PEDV-nucleocapsid (N) protein level and virus titer decreased significantly. The time-of-addition assay results showed that VAM could inhibit PEDV replication by blocking viral entry. Importantly, VAM could inhibit PEDV-induced phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) activity and further suppress micropinocytosis, which is required for PEDV entry. In addition, PI3K inhibitor LY294002 showed anti-PEDV activity by blocking viral entry as well. Taken together, VAM possessed anti-PEDV properties against the entry stage of PEDV by inhibiting the macropinocytosis pathway by suppressing the PI3K/Akt pathway. VAM could be considered as a lead compound for the development of anti-PEDV drugs and may be used during the viral entry stage of PEDV infection.
Collapse
Affiliation(s)
- Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caisheng Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
26
|
Noonan-Shueh M, Aman MJ, Kailasan S. Production and Purification of Filovirus Glycoproteins. Methods Mol Biol 2024; 2762:17-25. [PMID: 38315357 DOI: 10.1007/978-1-0716-3666-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ebola (EBOV) and Marburg (MARV) viruses cause hemorrhagic fever disease in humans and non-human primates (NHPs) with case-fatality rates as high as 90%. The 2013-2016 Ebola virus disease (EVD) outbreak led to over 28,000 cases and 11,000 deaths and took an enormous toll on the economy of West African nations, in the absence of any vaccine or therapeutic options. Like EVD, there have been at least 6 outbreaks of MVD with ~88% case-fatality and the most recent cases emerging in Equatorial Guinea in February 2023. These outbreaks have spurred an unprecedented global effort to develop vaccines and therapeutics for EVD and MVD and led to an approved vaccine (ERVEBO™) and two monoclonal antibody (mAb) therapeutics for EBOV. In contrast to EVD, therapeutic options against Marburg and another Ebola-relative Sudan virus (SUDV) are lacking. The filovirus glycoprotein (GP), which mediates host cell entry and fusion, is the primary target of neutralizing antibodies. In addition to its pre- and post-fusion trimeric states, the protein is highly glycosylated making production of pure and homogeneous trimers on a large scale, a requirement for subunit vaccine development, a challenge. In efforts to address this roadblock, we have developed a unique combination of structure-based design, selection of expression system, and purification methods to produce uniform and stable EBOV and MARV GP trimers at scales appropriate for vaccine production.
Collapse
|
27
|
Bi J, Wang H, Han Q, Pei H, Wang H, Jin H, Jin S, Chi H, Yang S, Zhao Y, Yan F, Ge L, Xia X. A rabies virus-vectored vaccine expressing two copies of the Marburg virus glycoprotein gene induced neutralizing antibodies against Marburg virus in humanized mice. Emerg Microbes Infect 2023; 12:2149351. [PMID: 36453198 PMCID: PMC9809360 DOI: 10.1080/22221751.2022.2149351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Marburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated.
Collapse
Affiliation(s)
- Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Hongyan Pei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, People’s Republic of China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| |
Collapse
|
28
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
29
|
Igarashi M, Hirokawa T, Takada A. Structural and Energetic Basis for Differential Binding of Ebola and Marburg Virus Glycoproteins to a Bat-Derived Niemann-Pick C1 Protein. J Infect Dis 2023; 228:S479-S487. [PMID: 37119290 DOI: 10.1093/infdis/jiad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Our previous study demonstrated that the fruit bat (Yaeyama flying fox)-derived cell line FBKT1 showed preferential susceptibility to Ebola virus (EBOV), whereas the human cell line HEK293T was similarly susceptible to EBOV and Marburg virus (MARV). This was due to 3 amino acid differences of the endosomal receptor Niemann-Pick C1 (NPC1) between FBKT1 and HEK293T (ie, TET and SGA, respectively, at positions 425-427), as well as 2 amino acid differences at positions 87 and 142 of the viral glycoprotein (GP) between EBOV and MARV. METHODS/RESULTS To understand the contribution of these amino acid differences to interactions between NPC1 and GP, we performed molecular dynamics simulations and binding free energy calculations. The average binding free energies of human NPC1 (hNPC1) and its mutant having TET at positions 425-427 (hNPC1/TET) were similar for the interaction with EBOV GP. In contrast, hNPC1/TET had a weaker interaction with MARV GP than wild-type hNPC1. As expected, substitutions of amino acid residues at 87 or 142 in EBOV and MARV GPs converted the binding affinity to hNPC1/TET. CONCLUSIONS Our data provide structural and energetic insights for understanding potential differences in the GP-NPC1 interaction, which could influence the host tropism of EBOV and MARV.
Collapse
Affiliation(s)
- Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
30
|
Djurkovic MA, Leavitt CG, Arnett E, Kriachun V, Martínez-Sobrido L, Titone R, Sherwood LJ, Hayhurst A, Schlesinger LS, Shtanko O. Ebola Virus Uses Tunneling Nanotubes as an Alternate Route of Dissemination. J Infect Dis 2023; 228:S522-S535. [PMID: 37723997 PMCID: PMC10651192 DOI: 10.1093/infdis/jiad400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Ebola virus (EBOV) disease is marked by rapid virus replication and spread. EBOV enters the cell by macropinocytosis and replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs). TNTs, an actin-based long-range intercellular communication system, allows for direct exchange of cytosolic constituents between cells. Using live, scanning electron, and high-resolution quantitative 3-dimensional microscopy, we show that EBOV infection of primary human cells results in the enhanced formation of TNTs containing viral nucleocapsids. TNTs promote the intercellular transfer of nucleocapsids in the absence of live virus, and virus could replicate in cells devoid of entry factors after initial stall. Our studies suggest an alternate model of EBOV dissemination within the host, laying the groundwork for further investigations into the pathogenesis of filoviruses and, importantly, stimulating new areas of antiviral design.
Collapse
Affiliation(s)
- Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Eusondia Arnett
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Valeriia Kriachun
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Luis Martínez-Sobrido
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Rossella Titone
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Laura J Sherwood
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Andrew Hayhurst
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| | - Larry S Schlesinger
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio
- Disease Prevention and Intervention, Texas Biomedical Research Institute, San Antonio
| |
Collapse
|
31
|
Santos RI, Ilinykh PA, Pietzsch CA, Ronk AJ, Huang K, Kuzmina NA, Zhou F, Crowe JE, Bukreyev A. Blocking of ebolavirus spread through intercellular connections by an MPER-specific antibody depends on BST2/tetherin. Cell Rep 2023; 42:113254. [PMID: 37858466 PMCID: PMC10664807 DOI: 10.1016/j.celrep.2023.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/10/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.
Collapse
Affiliation(s)
- Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Colette A Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - Fuchun Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Monteil V, Kwon H, John L, Salata C, Jonsson G, Vorrink SU, Appelberg S, Youhanna S, Dyczynski M, Leopoldi A, Leeb N, Volz J, Hagelkruys A, Kellner MJ, Devignot S, Michlits G, Foong-Sobis M, Weber F, Lauschke VM, Horn M, Feldmann H, Elling U, Penninger JM, Mirazimi A. Identification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infections. Nat Commun 2023; 14:6785. [PMID: 37880247 PMCID: PMC10600203 DOI: 10.1038/s41467-023-42526-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.
Collapse
Affiliation(s)
- Vanessa Monteil
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | - Lijo John
- National Veterinary Institute, Uppsala, Sweden
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Gustav Jonsson
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Alexandra Leopoldi
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Nicole Leeb
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Jennifer Volz
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stéphanie Devignot
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden
| | - Georg Michlits
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Michelle Foong-Sobis
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University, Giessen, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, Stockholm, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
| |
Collapse
|
33
|
Jain A, Govindan R, Berkman A, Luban J, Durham ND, Munro J. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524651. [PMID: 36711925 PMCID: PMC9882366 DOI: 10.1101/2023.01.18.524651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Forster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GPs interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
|
34
|
Siddiqui H, Deo N, Rutledge MT, Williams MJ, Redpath GM, McCormick SP. Plasminogen Receptors Promote Lipoprotein(a) Uptake by Enhancing Surface Binding and Facilitating Macropinocytosis. Arterioscler Thromb Vasc Biol 2023; 43:1851-1866. [PMID: 37589135 PMCID: PMC10521804 DOI: 10.1161/atvbaha.123.319344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.
Collapse
Affiliation(s)
- Halima Siddiqui
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Nikita Deo
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Malcolm T. Rutledge
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Michael J.A. Williams
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- Department of Medicine (M.J.A.W.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Gregory M.I. Redpath
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| | - Sally P.A. McCormick
- Department of Biochemistry (H.S., N.D., M.T.R., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
- School of Biomedical Sciences, HeartOtago (H.S., N.D., M.T.R., M.J.A.W., G.M.I.R., S.P.A.M.), Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
35
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
36
|
Shepley-McTaggart A, Liang J, Ding Y, Djurkovic MA, Kriachun V, Shtanko O, Sunyer O, Harty RN. Contrasting effects of filamin A and B proteins in modulating filovirus entry. PLoS Pathog 2023; 19:e1011595. [PMID: 37585478 PMCID: PMC10461817 DOI: 10.1371/journal.ppat.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/28/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated with high mortality rates in humans. A better understanding of filovirus-host interactions that regulate the EBOV and MARV lifecycles can provide biological and mechanistic insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARV glycoprotein (mGP) mediate entry into host cells primarily by actin-dependent macropinocytosis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa) and B (FLNb) as important regulators of both EBOV and MARV entry. We found that entry of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live authentic EBOV and MARV was inhibited in filamin A knockdown (FLNaKD) cells, but was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely contributes to their specific effects on EBOV and MARV entry. This study is the first to identify the filamin family of proteins as regulators of EBOV and MARV entry. These findings may provide insight into the development of new countermeasures to prevent EBOV and MARV infections.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marija A. Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Valeriia Kriachun
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
37
|
Kumar N, Taily IM, Singh C, Kumar S, Rajmani RS, Chakraborty D, Sharma A, Singh P, Thakur KG, Varadarajan R, Ringe RP, Banerjee P, Banerjee I. Identification of diphenylurea derivatives as novel endocytosis inhibitors that demonstrate broad-spectrum activity against SARS-CoV-2 and influenza A virus both in vitro and in vivo. PLoS Pathog 2023; 19:e1011358. [PMID: 37126530 PMCID: PMC10174524 DOI: 10.1371/journal.ppat.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) poses enormous challenge in the development of broad-spectrum antivirals that are effective against the existing and emerging viral strains. Virus entry through endocytosis represents an attractive target for drug development, as inhibition of this early infection step should block downstream infection processes, and potentially inhibit viruses sharing the same entry route. In this study, we report the identification of 1,3-diphenylurea (DPU) derivatives (DPUDs) as a new class of endocytosis inhibitors, which broadly restricted entry and replication of several SARS-CoV-2 and IAV strains. Importantly, the DPUDs did not induce any significant cytotoxicity at concentrations effective against the viral infections. Examining the uptake of cargoes specific to different endocytic pathways, we found that DPUDs majorly affected clathrin-mediated endocytosis, which both SARS-CoV-2 and IAV utilize for cellular entry. In the DPUD-treated cells, although virus binding on the cell surface was unaffected, internalization of both the viruses was drastically reduced. Since compounds similar to the DPUDs were previously reported to transport anions including chloride (Cl-) across lipid membrane and since intracellular Cl- concentration plays a critical role in regulating vesicular trafficking, we hypothesized that the observed defect in endocytosis by the DPUDs could be due to altered Cl- gradient across the cell membrane. Using in vitro assays we demonstrated that the DPUDs transported Cl- into the cell and led to intracellular Cl- accumulation, which possibly affected the endocytic machinery by perturbing intracellular Cl- homeostasis. Finally, we tested the DPUDs in mice challenged with IAV and mouse-adapted SARS-CoV-2 (MA 10). Treatment of the infected mice with the DPUDs led to remarkable body weight recovery, improved survival and significantly reduced lung viral load, highlighting their potential for development as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nirmal Kumar
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Charandeep Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Sahil Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Anshul Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Priyanka Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Krishan Gopal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Rajesh P. Ringe
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| |
Collapse
|
38
|
Bukreyev A, Ilinykh P, Huang K, Gunn B, Kuzmina N, Gilchuk P, Alter G, Crowe J. Antiviral protection by antibodies targeting the glycan cap of Ebola virus glycoprotein requires activation of the complement system. RESEARCH SQUARE 2023:rs.3.rs-2765936. [PMID: 37131834 PMCID: PMC10153373 DOI: 10.21203/rs.3.rs-2765936/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system in antibody-mediated protection remains unclear. In this study, we compared complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of the viral sole glycoprotein GP. Binding of GC-specific mAbs to GP induced complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs that did not. Moreover, treatment of cells with a glycosylation inhibitor increased the CDC activity, suggesting that N-linked glycans downregulate CDC. In the mouse model of EBOV infection, depletion of the complement system by cobra venom factor led to an impairment of protection exerted by GC-specific but not MPER-specific mAbs. Our data suggest that activation of the complement system is an essential component of antiviral protection by antibodies targeting GC of EBOV GP.
Collapse
|
39
|
Stewart CM, Bo Y, Fu K, Chan M, Kozak R, Apperley KYP, Laroche G, Daniel R, Beauchemin AM, Kobinger G, Kobasa D, Côté M. Sphingosine Kinases Promote Ebola Virus Infection and Can Be Targeted to Inhibit Filoviruses, Coronaviruses, and Arenaviruses Using Late Endocytic Trafficking to Enter Cells. ACS Infect Dis 2023; 9:1064-1077. [PMID: 37053583 DOI: 10.1021/acsinfecdis.2c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Corina M Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kim Yang-Ping Apperley
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - André M Beauchemin
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77550, United States
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
40
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Yi D, Li Q, Wang H, Lv K, Ma L, Wang Y, Wang J, Zhang Y, Liu M, Li X, Qi J, Shi Y, Gao GF, Cen S. Repurposing of berbamine hydrochloride to inhibit Ebola virus by targeting viral glycoprotein. Acta Pharm Sin B 2022; 12:4378-4389. [PMID: 36561997 PMCID: PMC9764067 DOI: 10.1016/j.apsb.2022.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) infection leads to staggeringly high mortality rate. Effective and low-cost treatments are urgently needed to control frequent EBOV outbreaks in Africa. In this study, we report that a natural compound called berbamine hydrochloride strongly inhibits EBOV replication in vitro and in vivo. Our work further showed that berbamine hydrochloride acts by directly binding to the cleaved EBOV glycoprotein (GPcl), disrupting GPcl interaction with viral receptor Niemann-Pick C1, thus blocking the fusion of viral and cellular membranes. Our data support the probability of developing anti-EBOV small molecule drugs by targeting viral GPcl. More importantly, since berbamine hydrochloride has been used in clinic to treat leukopenia, it holds great promise of being quickly repurposed as an anti-EBOV drug.
Collapse
Affiliation(s)
- Dongrong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Han Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Yongxin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding authors.
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing 100050, China,CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China,Corresponding authors.
| |
Collapse
|
42
|
CAPG Is Required for Ebola Virus Infection by Controlling Virus Egress from Infected Cells. Viruses 2022; 14:v14091903. [PMID: 36146710 PMCID: PMC9505868 DOI: 10.3390/v14091903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The replication of Ebola virus (EBOV) is dependent upon actin functionality, especially at cell entry through macropinocytosis and at release of virus from cells. Previously, major actin-regulatory factors involved in actin nucleation, such as Rac1 and Arp2/3, were shown important in both steps. However, downstream of nucleation, many other cell factors are needed to control actin dynamics. How these regulate EBOV infection remains largely unclear. Here, we identified the actin-regulating protein, CAPG, as important for EBOV replication. Notably, knockdown of CAPG specifically inhibited viral infectivity and yield of infectious particles. Cell-based mechanistic analysis revealed a requirement of CAPG for virus production from infected cells. Proximity ligation and split-green fluorescent protein reconstitution assays revealed strong association of CAPG with VP40 that was mediated through the S1 domain of CAPG. Overall, CAPG is a novel host factor regulating EBOV infection through connecting actin filament stabilization to viral egress from cells.
Collapse
|
43
|
Wang LL, Estrada L, Wiggins J, Anantpadma M, Patten JJ, Davey RA, Xiang SH. Ligand-based design of peptide entry inhibitors targeting the endosomal receptor binding site of filoviruses. Antiviral Res 2022; 206:105399. [PMID: 36007601 DOI: 10.1016/j.antiviral.2022.105399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Filoviruses enter cells through micropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.
Collapse
Affiliation(s)
- Leah Liu Wang
- School of Veterinary Medicine and Biomedical Sciences, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Leslie Estrada
- School of Veterinary Medicine and Biomedical Sciences, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Manu Anantpadma
- Department of Microbiology & National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02115, USA
| | - J J Patten
- Department of Microbiology & National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02115, USA
| | - Robert A Davey
- Department of Microbiology & National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02115, USA
| | - Shi-Hua Xiang
- School of Veterinary Medicine and Biomedical Sciences, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
44
|
Peng W, Rayaprolu V, Parvate AD, Pronker MF, Hui S, Parekh D, Shaffer K, Yu X, Saphire EO, Snijder J. Glycan shield of the ebolavirus envelope glycoprotein GP. Commun Biol 2022; 5:785. [PMID: 35927436 PMCID: PMC9352669 DOI: 10.1038/s42003-022-03767-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
The envelope glycoprotein GP of the ebolaviruses is essential for host cell entry and the primary target of the host antibody response. GP is heavily glycosylated with up to 17 N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation is important for host cell attachment, GP stability and fusion activity, and shielding from neutralization by serum antibodies. Here, we use glycoproteomics to profile the site-specific glycosylation patterns of ebolavirus GP. We detect up to 16 unique O-linked glycosylation sites in the MLD, and two O-linked sites in the receptor-binding GP1 subunit. Multiple O-linked glycans are observed within N-linked glycosylation sequons, suggesting crosstalk between the two types of modifications. We confirmed C-mannosylation of W288 in full-length trimeric GP. We find complex glycosylation at the majority of N-linked sites, while the conserved sites N257 and especially N563 are enriched in unprocessed glycans, suggesting a role in host-cell attachment via DC-SIGN/L-SIGN. Our findings illustrate how N-, O-, and C-linked glycans together build the heterogeneous glycan shield of GP, guiding future immunological studies and functional interpretation of ebolavirus GP-antibody interactions. Site-specific N-, O-, and C-linked glycans are characterized in the ebolavirus envelope glycoprotein GP using mass spectrometry-based glycoproteomics.
Collapse
Affiliation(s)
- Weiwei Peng
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Pacific Northwest Center for CryoEM, Portland, OR, 97225, USA
| | - Amar D Parvate
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Sean Hui
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Molecular Microbiology and Microbial Pathogenesis Program, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Diptiben Parekh
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Kelly Shaffer
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erica O Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Abstract
Filovirus-infected cells are characterized by typical cytoplasmic inclusion bodies (IBs) located in the perinuclear region. The formation of these IBs is induced mainly by the accumulation of the filoviral nucleoprotein NP, which recruits the other nucleocapsid proteins, the polymerase co-factor VP35, the polymerase L, the transcription factor VP30 and VP24 via direct or indirect protein-protein interactions. Replication of the negative-strand RNA genomes by the viral polymerase L and VP35 occurs in the IBs, resulting in the synthesis of positive-strand genomes, which are encapsidated by NP, thus forming ribonucleoprotein complexes (antigenomic RNPs). These newly formed antigenomic RNPs in turn serve as templates for the synthesis of negative-strand RNA genomes that are also encapsidated by NP (genomic RNPs). Still in the IBs, genomic RNPs mature into tightly packed transport-competent nucleocapsids (NCs) by the recruitment of the viral protein VP24. NCs are tightly coiled left-handed helices whose structure is mainly determined by the multimerization of NP at its N-terminus, and these helices form the inner layer of the NCs. The RNA genome is fixed by 2 lobes of the NP N-terminus and is thus guided by individual NP molecules along the turns of the helix. Direct interaction of the NP C-terminus with the VP35 and VP24 molecules forms the outer layer of the NCs. Once formed, NCs that are located at the border of the IBs recruit actin polymerization machinery to one of their ends to drive their transport to budding sites for their envelopment and final release. Here, we review the current knowledge on the structure, assembly, and transport of filovirus NCs.
Collapse
Affiliation(s)
- Olga Dolnik
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
46
|
Plescia CB, Lindstrom AR, Quintero MV, Keiser P, Anantpadma M, Davey R, Stahelin RV, Davisson VJ. Evaluation of Phenol-Substituted Diphyllin Derivatives as Selective Antagonists for Ebola Virus Entry. ACS Infect Dis 2022; 8:942-957. [PMID: 35357134 PMCID: PMC9112336 DOI: 10.1021/acsinfecdis.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Ebola
virus (EBOV) is an aggressive filoviral pathogen that can
induce severe hemorrhagic fever in humans with up to 90% fatality
rate. To date, there are no clinically effective small-molecule drugs
for postexposure therapies to treat filoviral infections. EBOV cellular
entry and infection involve uptake via macropinocytosis, navigation
through the endocytic pathway, and pH-dependent escape into the cytoplasm.
We report the inhibition of EBOV cell entry via selective inhibition
of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives
of the natural product scaffold diphyllin. In cells challenged with
Ebola virus, the diphyllin derivatives inhibit viral entry dependent
upon structural variations to low nanomolar potencies. Mechanistically,
the diphyllin derivatives had no effect on uptake and colocalization
of viral particles with endocytic marker LAMP1 but directly modulated
endosomal pH. The most potent effects were reversible exhibiting higher
selectivity than bafilomycin or the parent diphyllin. Unlike general
lysosomotrophic agents, the diphyllin derivatives showed no major
disruptions of endocytic populations or morphology when examined with
Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod
treatment or in constitutively active Rab5 mutant Q79L-expressing
cells was both blocked and reversed by the diphyllin derivatives.
The results are consistent with the action of the diphyllin scaffold
as a selective pH-dependent viral entry block in late endosomes. Overall,
the compounds show improved selectivity and minimal cytotoxicity relative
to classical endosomal acidification blocking agents.
Collapse
Affiliation(s)
| | | | - Maritza V. Quintero
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio 78229-3900, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Manu Anantpadma
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
47
|
Gourronc FA, Rebagliati M, Kramer-Riesberg B, Fleck AM, Patten JJ, Geohegan-Barek K, Messingham KN, Davey RA, Maury W, Klingelhutz AJ. Adipocytes are susceptible to Ebola Virus infection. Virology 2022; 573:12-22. [DOI: 10.1016/j.virol.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
|
48
|
Tu H, Wang Z, Yuan Y, Miao X, Li D, Guo H, Yang Y, Cai H. The PripA-TbcrA complex-centered Rab GAP cascade facilitates macropinosome maturation in Dictyostelium. Nat Commun 2022; 13:1787. [PMID: 35379834 PMCID: PMC8980073 DOI: 10.1038/s41467-022-29503-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractMacropinocytosis, an evolutionarily conserved mechanism mediating nonspecific bulk uptake of extracellular fluid, has been ascribed diverse functions. How nascent macropinosomes mature after internalization remains largely unknown. By searching for proteins that localize on macropinosomes during the Rab5-to-Rab7 transition stage in Dictyostelium, we uncover a complex composed of two proteins, which we name PripA and TbcrA. We show that the Rab5-to-Rab7 conversion involves fusion of Rab5-marked early macropinosomes with Rab7-marked late macropinosomes. PripA links the two membrane compartments by interacting with PI(3,4)P2 and Rab7. In addition, PripA recruits TbcrA, which acts as a GAP, to turn off Rab5. Thus, the conversion to Rab7 is linked to inactivation of the upstream Rab5. Consistently, disruption of either pripA or tbcrA impairs Rab5 inactivation and macropinocytic cargo processing. Therefore, the PripA-TbcrA complex is the central component of a Rab GAP cascade that facilitates programmed Rab switch and efficient cargo trafficking during macropinosome maturation.
Collapse
|
49
|
A CRISPR-Cas9 screen reveals a role for WD repeat-containing protein 81 (WDR81) in the entry of late penetrating viruses. PLoS Pathog 2022; 18:e1010398. [PMID: 35320319 PMCID: PMC8942271 DOI: 10.1371/journal.ppat.1010398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Successful initiation of infection by many different viruses requires their uptake into the endosomal compartment. While some viruses exit this compartment early, others must reach the degradative, acidic environment of the late endosome. Mammalian orthoreovirus (reovirus) is one such late penetrating virus. To identify host factors that are important for reovirus infection, we performed a CRISPR-Cas9 knockout (KO) screen that targets over 20,000 genes in fibroblasts derived from the embryos of C57/BL6 mice. We identified seven genes (WDR81, WDR91, RAB7, CCZ1, CTSL, GNPTAB, and SLC35A1) that were required for the induction of cell death by reovirus. Notably, CRISPR-mediated KO of WD repeat-containing protein 81 (WDR81) rendered cells resistant to reovirus infection. Susceptibility to reovirus infection was restored by complementing KO cells with human WDR81. Although the absence of WDR81 did not affect viral attachment efficiency or uptake into the endosomal compartments for initial disassembly, it reduced viral gene expression and diminished infectious virus production. Consistent with the role of WDR81 in impacting the maturation of endosomes, WDR81-deficiency led to the accumulation of reovirus particles in dead-end compartments. Though WDR81 was dispensable for infection by VSV (vesicular stomatitis virus), which exits the endosomal system at an early stage, it was required for VSV-EBO GP (VSV that expresses the Ebolavirus glycoprotein), which must reach the late endosome to initiate infection. These results reveal a previously unappreciated role for WDR81 in promoting the replication of viruses that transit through late endosomes. Viruses are obligate intracellular parasites that require the contributions of numerous host factors to complete the viral life cycle. Thus, the host-pathogen interaction can regulate cell death signaling and virus entry, replication, assembly, and egress. Functional genetic screens are useful tools to identify host factors that are important for establishing infection. Such information can also be used to understand cell biology. Notably, genome-scale CRISPR-Cas9 knockout screens are robust due to their specificity and the loss of host gene expression. Mammalian orthoreovirus (reovirus) is a tractable model system to investigate the pathogenesis of neurotropic and cardiotropic viruses. Using a CRISPR-Cas9 screen, we identified WD repeat-containing protein 81 (WDR81) as a host factor required for efficient reovirus infection of murine cells. Ablation of WDR81 blocked a late step in the viral entry pathway. Further, our work indicates that WDR81 is required for the entry of vesicular stomatitis virus that expresses the Ebolavirus glycoprotein.
Collapse
|
50
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|