1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Supattapone S. Cofactor molecules: Essential partners for infectious prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:53-75. [PMID: 32958241 DOI: 10.1016/bs.pmbts.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, to date, all wild type protein-only PrPSc preparations lack significant levels of prion infectivity. Using a systemic biochemical approach, our laboratory isolated and identified two different endogenous cofactor molecules, RNA (Deleault et al., 2003 [50]; Deleault et al., 2007 [59]) and phosphatidylethanolamine (Deleault et al., 2012 [61]; Deleault et al., 2012 [18]), which facilitate the formation of prions with high levels of specific infectivity, leading us to propose to the alternative hypothesis that cofactor molecules are required to form wild type infectious prions (Deleault et al., 2007 [59]; Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]). In addition, we found that purified cofactor molecules restrict the strain properties of chemically defined infectious prions (Deleault et al., 2012 [18]), suggesting a "cofactor selection" model in which natural variation in the distribution of strain-specific cofactor molecules in different parts of the brain may be responsible for strain-dependent patterns of neurotropism (Deleault et al., 2012 [18]; Geoghegan et al., 2007 [57]).
Collapse
Affiliation(s)
- Surachai Supattapone
- Department of Biochemistry and Cell Biology and Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States.
| |
Collapse
|
3
|
In vitro Modeling of Prion Strain Tropism. Viruses 2019; 11:v11030236. [PMID: 30857283 PMCID: PMC6466166 DOI: 10.3390/v11030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
4
|
Alred EJ, Lodangco I, Gallaher J, Hansmann UH. Mutations Alter RNA-Mediated Conversion of Human Prions. ACS OMEGA 2018; 3:3936-3944. [PMID: 29732450 PMCID: PMC5928492 DOI: 10.1021/acsomega.7b02007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Prion diseases are connected with self-replication and self-propagation of misfolded proteins. The rate-limiting factor is the formation of the initial seed. We have recently studied the early stages in the conversion between functional PrPC and the infectious scrapie PrPSC form, triggered by the binding of RNA. Here, we study how this process is modulated by the prion sequence. We focus on residues 129 and 178, which are connected to the hereditary neurodegenerative disease fatal familial insomnia.
Collapse
|
5
|
Alred EJ, Nguyen M, Martin M, Hansmann UHE. Molecular dynamics simulations of early steps in RNA-mediated conversion of prions. Protein Sci 2017; 26:1524-1534. [PMID: 28425641 DOI: 10.1002/pro.3178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/16/2017] [Indexed: 01/23/2023]
Abstract
The rate-limiting step in prion diseases is the initial transition of a prion protein from its native form into a mis-folded state in which the protein not only forms cell-toxic aggregates but also becomes infectious. Recent experiments implicate polyadenosine RNA as a possible agent for generating the initial seed. In order to understand the mechanism of RNA-mediated mis-folding and aggregation of prions, we dock polyadenosine RNA to mouse and human prion models. Changes in stability and secondary structure of the prions upon binding to polyadenosine RNA are evaluated by comparing molecular dynamics simulations of these complexes with that of the unbound prions.
Collapse
Affiliation(s)
- Erik J Alred
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Michael Nguyen
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Maggie Martin
- Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
6
|
Abstract
Prion diseases affect a wide range of mammal species and are caused by a misfolded self-propagating isoform (PrPSc) of the normal prion protein (PrPC). Distinct strains of prions exist and are operationally defined by differences in a heritable phenotype under controlled experimental transmission conditions. Prion strains can differ in incubation period, clinical signs of disease, tissue tropism, and host range. The mechanism by which a protein-only pathogen can encode strain diversity is only beginning to be understood. The prevailing hypothesis is that prion strain diversity is encoded by strain-specific conformations of PrPSc; however, strain-specific cellular cofactors have been identified in vitro that may also contribute to prion strain diversity. Although much progress has been made on understanding the etiological agent of prion disease, the relationship between the strain-specific properties of PrPSc and the resulting phenotype of disease in animals is poorly understood.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
7
|
Noble GP, Wang DW, Walsh DJ, Barone JR, Miller MB, Nishina KA, Li S, Supattapone S. A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers. PLoS Pathog 2015; 11:e1005017. [PMID: 26125623 PMCID: PMC4488359 DOI: 10.1371/journal.ppat.1005017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022] Open
Abstract
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure. A key prediction of the prion hypothesis is that autocatalytic, misfolded PrPSc molecules should be highly infectious. Various recombinant PrPSc conformers are able to self-propagate in vitro, yet paradoxically only some of these conformers possess significant levels of specific infectivity in bioassays. Here we use two closely-matched autocatalytic recombinant PrP conformers that share the same origin but differ by >105-fold in specific infectivity to study the molecular basis of prion infectivity. We show that infectious and non-infectious autocatalytic recombinant PrP conformers have subtle structural differences, and that GPI-anchored PrP substrate molecules can only adopt the infectious PrPSc conformation. We conclude that post-translational modifications of host PrPC molecules play a critical role in restricting the range of recombinant PrPSc conformers that are biologically infectious.
Collapse
Affiliation(s)
- Geoffrey P. Noble
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daphne W. Wang
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Justin R. Barone
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael B. Miller
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sheng Li
- Medicine and Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, California, United States of America
| | - Surachai Supattapone
- Departments of Biochemistry and Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
8
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
9
|
Zurawel AA, Walsh DJ, Fortier SM, Chidawanyika T, Sengupta S, Zilm K, Supattapone S. Prion nucleation site unmasked by transient interaction with phospholipid cofactor. Biochemistry 2014; 53:68-76. [PMID: 24328062 DOI: 10.1021/bi4014825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious mammalian prions can be formed de novo from purified recombinant prion protein (PrP) substrate through a pathway that requires the sequential addition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and RNA cofactor molecules. Recent studies show that the initial interaction between PrP and POPG causes widespread and persistent conformational changes to form an insoluble intermediate species, termed PrP(Int1). Here, we characterize the mechanism and functional consequences of the interaction between POPG and PrP. Negative-stain electron microscopy of PrP(Int1) revealed the presence of amorphous aggregates. Pull-down and photoaffinity label experiments indicate that POPG induces the formation of a PrP(C) polybasic-domain-binding neoepitope within PrP(Int1). The ongoing presence of POPG is not required to maintain PrP(Int1) structure, as indicated by the absence of stoichiometric levels of POPG in solid-state NMR measurements of PrP(Int1). Together, these results show that a transient interaction with POPG cofactor unmasks a PrP(C) binding site, leading to PrP(Int1) aggregation.
Collapse
Affiliation(s)
- Ashley A Zurawel
- Departments of Biochemistry and ‡Medicine, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
11
|
Gonzalez-Montalban N, Lee YJ, Makarava N, Savtchenko R, Baskakov IV. Changes in prion replication environment cause prion strain mutation. FASEB J 2013; 27:3702-10. [PMID: 23729586 DOI: 10.1096/fj.13-230466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interspecies prion transmission often leads to stable changes in physical and biological features of prion strains, a phenomenon referred to as a strain mutation. It remains unknown whether changes in the replication environment in the absence of changes in PrP primary structure can be a source of strain mutations. To approach this question, RNA content was altered in the course of amplification of hamster strains in serial protein misfolding cyclic amplification (sPMCAb). On adaptation to an RNA-depleted environment and then readaptation to an environment containing RNA, strain 263K gave rise to a novel PrP(Sc) conformation referred to as 263K(R+), which is characterized by very low conformational stability, high sensitivity to proteolytic digestion, and a replication rate of 10(6)-fold/PMCAb round, which exceeded that of 263K by almost 10(4)-fold. A series of PMCAb experiments revealed that 263K(R+) was lacking in brain-derived 263K material, but emerged de novo as a result of changes in RNA content. A similar transformation was also observed for strain Hyper, suggesting that this phenomenon was not limited to 263K. The current work demonstrates that dramatic PrP(Sc) transformations can be induced by changes in the prion replication environment and without changes in PrP primary structure.
Collapse
Affiliation(s)
- Nuria Gonzalez-Montalban
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 725 W. Lombard St., Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
12
|
Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 2012; 109:E1938-46. [PMID: 22711839 DOI: 10.1073/pnas.1206999109] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prions containing misfolded prion protein (PrP(Sc)) can be formed with cofactor molecules using the technique of serial protein misfolding cyclic amplification. However, it remains unknown whether cofactors materially participate in maintaining prion conformation and infectious properties. Here we show that withdrawal of cofactor molecules during serial propagation of purified recombinant prions caused adaptation of PrP(Sc) structure accompanied by a reduction in specific infectivity of >10(5)-fold, to undetectable levels, despite the ability of adapted "protein-only" PrP(Sc) molecules to self-propagate in vitro. We also report that changing only the cofactor component of a minimal reaction substrate mixture during serial propagation induced major changes in the strain properties of an infectious recombinant prion. Moreover, propagation with only one functional cofactor (phosphatidylethanolamine) induced the conversion of three distinct strains into a single strain with unique infectious properties and PrP(Sc) structure. Taken together, these results indicate that cofactor molecules can regulate the defining features of mammalian prions: PrP(Sc) conformation, infectivity, and strain properties. These findings suggest that cofactor molecules likely are integral components of infectious prions.
Collapse
|
13
|
Affiliation(s)
- Jiyan Ma
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, United States of America.
| |
Collapse
|
14
|
Diaz-Espinoza R, Soto C. High-resolution structure of infectious prion protein: the final frontier. Nat Struct Mol Biol 2012; 19:370-7. [PMID: 22472622 DOI: 10.1038/nsmb.2266] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrP(Sc)), which is able to template the conversion of the host's natively folded form of the protein (PrP(C)). The detailed mechanism of prion replication and the high-resolution structure of PrP(Sc) are unknown. The currently available information on PrP(Sc) structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrP(Sc) structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrP(Sc), arguably the major pending milestone to reach in understanding prions.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School, Houston, Texas, USA
| | | |
Collapse
|
15
|
Gomes MPB, Vieira TCRG, Cordeiro Y, Silva JL. The role of RNA in mammalian prion protein conversion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:415-28. [PMID: 22095764 DOI: 10.1002/wrna.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Abstract
Whether a genetic informational nucleic acid is required for the infectivity of transmissible spongiform encephalopathies is central to the debate about the infectious agent. Here we report that an infectious prion formed with bacterially expressed recombinant prion protein plus synthetic polyriboadenylic acid and synthetic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol is competent to infect cultured cells and cause prion disease in wild-type mice. Our results show that genetic informational RNA is not required for recombinant prion infectivity.
Collapse
|
17
|
Piro JR, Supattapone S. Photodegradation illuminates the role of polyanions in prion infectivity. Prion 2011; 5:49-51. [PMID: 21646861 DOI: 10.4161/pri.5.2.16155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Understanding the mechanism by which prion infectivity is encoded by the misfolded protein PrP (Sc ) remains a high priority within the prion field. Work from several groups has indicated cellular cofactors may be necessary to form infectious prions in vitro. The identity of endogenous prion conversion cofactors is currently unknown, but may include polyanions and/or lipid molecules. In a recent study, we manufactured infectious hamster prions containing purified PrP (Sc) , co-purified lipid, and a synthetic photocleavable polyanion. The polyanion was incorporated into infectious PrP (Sc) complexes, and then specifically degraded by exposure to ultraviolet light. Light-induced in situ degradation of the incorporated polyanion had no effect on the specific infectivity of the samples as determined by end-point dilution sPMCA and scrapie incubation time assays. Furthermore, prion strain properties were not changed by polyanion degradation, suggesting that intact polyanions are not required to maintain the infectious properties of hamster prions. Here, we review these results and discuss the potential roles cofactors might play in encoding prion infectivity and/or strain properties.
Collapse
Affiliation(s)
- Justin R Piro
- Departments of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|