1
|
Mookherjee A, Mitra M, Sason G, Jose PA, Martinenko M, Pietrokovski S, Jurkevitch E. Flagellar stator genes control a trophic shift from obligate to facultative predation and biofilm formation in a bacterial predator. mBio 2024; 15:e0071524. [PMID: 39037271 PMCID: PMC11323537 DOI: 10.1128/mbio.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohor Mitra
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Polpass Arul Jose
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Martinenko
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Hu Y, Schwab S, Deiss S, Escudeiro P, van Heesch T, Joiner J, Vreede J, Hartmann M, Lupas A, Alvarez B, Alva V, Dame R. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res 2024; 52:8193-8204. [PMID: 38864377 PMCID: PMC11317129 DOI: 10.1093/nar/gkae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.
Collapse
Affiliation(s)
- Yimin Hu
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Silvia Deiss
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Joe D Joiner
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands; Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Remy O, Santin YG, Jonckheere V, Tesseur C, Kaljević J, Van Damme P, Laloux G. Distinct dynamics and proximity networks of hub proteins at the prey-invading cell pole in a predatory bacterium. J Bacteriol 2024; 206:e0001424. [PMID: 38470120 PMCID: PMC11025332 DOI: 10.1128/jb.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
In bacteria, cell poles function as subcellular compartments where proteins localize during specific lifecycle stages, orchestrated by polar "hub" proteins. Whereas most described bacteria inherit an "old" pole from the mother cell and a "new" pole from cell division, generating cell asymmetry at birth, non-binary division poses challenges for establishing cell polarity, particularly for daughter cells inheriting only new poles. We investigated polarity dynamics in the obligate predatory bacterium Bdellovibrio bacteriovorus, proliferating through filamentous growth followed by non-binary division within prey bacteria. Monitoring the subcellular localization of two proteins known as polar hubs in other species, RomR and DivIVA, revealed RomR as an early polarity marker in B. bacteriovorus. RomR already marks the future anterior poles of the progeny during the predator's growth phase, during a precise period closely following the onset of divisome assembly and the end of chromosome segregation. In contrast to RomR's stable unipolar localization in the progeny, DivIVA exhibits a dynamic pole-to-pole localization. This behavior changes shortly before the division of the elongated predator cell, where DivIVA accumulates at all septa and both poles. In vivo protein interaction networks for DivIVA and RomR, mapped through endogenous miniTurbo-based proximity labeling, further underscore their distinct roles in cell polarization and reinforce the importance of the anterior "invasive" cell pole in prey-predator interactions. Our work also emphasizes the precise spatiotemporal order of cellular processes underlying B. bacteriovorus proliferation, offering insights into the subcellular organization of bacteria with filamentous growth and non-binary division.IMPORTANCEIn bacteria, cell poles are crucial areas where "hub" proteins orchestrate lifecycle events through interactions with multiple partners at specific times. While most bacteria exhibit one "old" and one "new" pole, inherited from the previous division event, setting polar identity poses challenges in bacteria with non-binary division. This study explores polar proteins in the predatory bacterium Bdellovibrio bacteriovorus, which undergoes filamentous growth followed by non-binary division inside another bacterium. Our research reveals distinct localization dynamics of the polar proteins RomR and DivIVA, highlighting RomR as an early "hub" marking polar identity in the filamentous mother cell. Using miniTurbo-based proximity labeling, we uncovered their unique protein networks. Overall, our work provides new insights into the cell polarity in non-binary dividing bacteria.
Collapse
Affiliation(s)
- Ophélie Remy
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Yoann G. Santin
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Coralie Tesseur
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jovana Kaljević
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Géraldine Laloux
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
5
|
Cheng J, Gan G, Zheng S, Zhang G, Zhu C, Liu S, Hu J. Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections. Nat Commun 2023; 14:7510. [PMID: 37980361 PMCID: PMC10657346 DOI: 10.1038/s41467-023-43415-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
The formation of biofilms is closely associated with persistent and chronic infections, and physiological heterogeneity such as pH and oxygen gradients renders biofilms highly resistant to conventional antibiotics. To date, effectively treating biofilm infections remains a significant challenge. Herein, we report the fabrication of micellar nanoparticles adapted to heterogeneous biofilm microenvironments, enabling nitric oxide (NO) release through two distinct photoredox catalysis mechanisms. The key design feature involves the use of tertiary amine (TA) moieties, which function as sacrificial agents to avoid the quenching of photocatalysts under normoxic and neutral pH conditions and proton acceptors at acidic pH to allow deep biofilm penetration. This biofilm-adaptive NO-releasing platform shows excellent antibiofilm activity against ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA) biofilms both in vitro and in a mouse skin infection model, providing a strategy for combating biofilm heterogeneity and biofilm-related infections.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China.
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| |
Collapse
|
6
|
Caulton SG, Lovering AL. Moving toward a better understanding of the model bacterial predator Bdellovibrio bacteriovorus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001380. [PMID: 37535060 PMCID: PMC10482364 DOI: 10.1099/mic.0.001380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
The bacterial predator Bdellovibrio bacteriovorus is a model for the wider phenomenon of bacteria:bacteria predation, and the specialization required to achieve a lifestyle dependent on prey consumption. Bdellovibrio bacteriovorus is able to recognize, enter and ultimately consume fellow Gram-negative bacteria, killing these prey from within their periplasmic space, and lysing the host at the end of the cycle. The classic phenotype-driven characterization (and observation of predation) has benefitted from an increased focus on molecular mechanisms and fluorescence microscopy and tomography, revealing new features of several of the lifecycle stages. Herein we summarize a selection of these advances and describe likely areas for exploration that will push the field toward a more complete understanding of this fascinating 'two-cell' system.
Collapse
Affiliation(s)
- Simon G. Caulton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
7
|
Kaplan M, Chang YW, Oikonomou CM, Nicolas WJ, Jewett AI, Kreida S, Dutka P, Rettberg LA, Maggi S, Jensen GJ. Bdellovibrio predation cycle characterized at nanometre-scale resolution with cryo-electron tomography. Nat Microbiol 2023; 8:1267-1279. [PMID: 37349588 PMCID: PMC11061892 DOI: 10.1038/s41564-023-01401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/27/2023] [Indexed: 06/24/2023]
Abstract
Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - William J Nicolas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew I Jewett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stefan Kreida
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
8
|
van der Does C, Braun F, Ren H, Albers SV. Putative nucleotide-based second messengers in archaea. MICROLIFE 2023; 4:uqad027. [PMID: 37305433 PMCID: PMC10249747 DOI: 10.1093/femsml/uqad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.
Collapse
Affiliation(s)
- Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hongcheng Ren
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Lai TF, Ford RM, Huwiler SG. Advances in cellular and molecular predatory biology of Bdellovibrio bacteriovorus six decades after discovery. Front Microbiol 2023; 14:1168709. [PMID: 37256055 PMCID: PMC10225642 DOI: 10.3389/fmicb.2023.1168709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Since its discovery six decades ago, the predatory bacterium Bdellovibrio bacteriovorus has sparked recent interest as a potential remedy to the antibiotic resistance crisis. Here we give a comprehensive historical overview from discovery to progressive developments in microscopy and molecular mechanisms. Research on B. bacteriovorus has moved from curiosity to a new model organism, revealing over time more details on its physiology and fascinating predatory life cycle with the help of a variety of methods. Based on recent findings in cryo-electron tomography, we recapitulate on the intricate molecular details known in the predatory life cycle including how this predator searches for its prey bacterium, to how it attaches, grows, and divides all from within the prey cell. Finally, the newly developed B. bacteriovorus progeny leave the prey cell remnants in the exit phase. While we end with some unanswered questions remaining in the field, new imaging technologies and quantitative, systematic advances will likely help to unravel them in the next decades.
Collapse
Affiliation(s)
- Ting F. Lai
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rhian M. Ford
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Simona G. Huwiler
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Junkermeier EH, Hengge R. Local signaling enhances output specificity of bacterial c-di-GMP signaling networks. MICROLIFE 2023; 4:uqad026. [PMID: 37251514 PMCID: PMC10211494 DOI: 10.1093/femsml/uqad026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
For many years the surprising multiplicity, signal input diversity, and output specificity of c-di-GMP signaling proteins has intrigued researchers studying bacterial second messengers. How can several signaling pathways act in parallel to produce specific outputs despite relying on the same diffusible second messenger maintained at a certain global cellular concentration? Such high specificity and flexibility arise from combining modes of local and global c-di-GMP signaling in complex signaling networks. Local c-di-GMP signaling can be experimentally shown by three criteria being met: (i) highly specific knockout phenotypes for particular c-di-GMP-related enzymes, (ii) actual cellular c-di-GMP levels that remain unchanged by such mutations and/or below the Kd's of the relevant c-di-GMP-binding effectors, and (iii) direct interactions between the signaling proteins involved. Here, we discuss the rationale behind these criteria and present well-studied examples of local c-di-GMP signaling in Escherichia coli and Pseudomonas. Relatively simple systems just colocalize a local source and/or a local sink for c-di-GMP, i.e. a diguanylate cyclase (DGC) and/or a specific phosphodiesterase (PDE), respectively, with a c-di-GMP-binding effector/target system. More complex systems also make use of regulatory protein interactions, e.g. when a "trigger PDE" responds to locally provided c-di-GMP, and thereby serves as a c-di-GMP-sensing effector that directly controls a target's activity, or when a c-di-GMP-binding effector recruits and directly activates its own "private" DGC. Finally, we provide an outlook into how cells can combine local and global signaling modes of c-di-GMP and possibly integrate those into other signaling nucleotides networks.
Collapse
Affiliation(s)
- Eike H Junkermeier
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany
| | - Regine Hengge
- Corresponding author. Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Philippstr. 13 – Haus 22, 10115 Berlin, Germany. Tel: +49-30-2093-49686; Fax: +49-30-2093-49682; E-mail:
| |
Collapse
|
11
|
Rangarajan AA, Waters CM. Double take: A dual-functional Hypr GGDEF synthesizes both cyclic di-GMP and cyclic GMP—AMP to control predation in Bdellovibrio bacteriovorus. PLoS Genet 2022; 18:e1010263. [PMID: 35862299 PMCID: PMC9302825 DOI: 10.1371/journal.pgen.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Aathmaja Anandhi Rangarajan
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Production of 3′,3′-cGAMP by a Bdellovibrio bacteriovorus promiscuous GGDEF enzyme, Bd0367, regulates exit from prey by gliding motility. PLoS Genet 2022; 18:e1010164. [PMID: 35622882 PMCID: PMC9140294 DOI: 10.1371/journal.pgen.1010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial second messengers are important for regulating diverse bacterial lifestyles. Cyclic di-GMP (c-di-GMP) is produced by diguanylate cyclase enzymes, named GGDEF proteins, which are widespread across bacteria. Recently, hybrid promiscuous (Hypr) GGDEF proteins have been described in some bacteria, which produce both c-di-GMP and a more recently identified bacterial second messenger, 3′,3′-cyclic-GMP-AMP (cGAMP). One of these proteins was found in the predatory Bdellovibrio bacteriovorus, Bd0367. The bd0367 GGDEF gene deletion strain was found to enter prey cells, but was incapable of leaving exhausted prey remnants via gliding motility on a solid surface once predator cell division was complete. However, it was unclear which signal regulated this process. We show that cGAMP signalling is active within B. bacteriovorus and that, in addition to producing c-di-GMP and some c-di-AMP, Bd0367 is a primary producer of cGAMP in vivo. Site-directed mutagenesis of serine 214 to an aspartate rendered Bd0367 into primarily a c-di-GMP synthase. B. bacteriovorus strain bd0367S214D phenocopies the bd0367 deletion strain by being unable to glide on a solid surface, leading to an inability of new progeny to exit from prey cells post-replication. Thus, this process is regulated by cGAMP. Deletion of bd0367 was also found to be incompatible with wild-type flagellar biogenesis, as a result of an acquired mutation in flagellin chaperone gene homologue fliS, implicating c-di-GMP in regulation of swimming motility. Thus the single Bd0367 enzyme produces two secondary messengers by action of the same GGDEF domain, the first reported example of a synthase that regulates multiple second messengers in vivo. Unlike roles of these signalling molecules in other bacteria, these signal to two separate motility systems, gliding and flagellar, which are essential for completion of the bacterial predation cycle and prey exit by B. bacteriovorus. Secondary messengers are important signalling molecules in bacteria and a recently discovered one, called cGAMP, has recently been shown to be made by some enzymes which had previously been known to produce another secondary messenger, c-di-GMP. One of these “hybrid promiscuous” enzymes (Bd0367) is found in Bdellovibrio bacteriovorus, a bacterium that preys upon other bacteria, burrowing inside them and consuming them from within. Previous gene deletion work had shown that Bd0367 was essential in signalling for Bdellovibrio to leave the remains of its prey cell by gliding motility after predation was complete and it was thought that this was due to c-di-GMP signalling. However, here, we show that this gliding motility is actually regulated by cGAMP signalling and that c-di-GMP signalling is involved in swimming motility. A single enzyme produces two different molecules, signalling to two discrete motility systems, both of which are required for successful completion of the bacterium’s predatory lifestyle in prey on solid surfaces or in liquids.
Collapse
|
13
|
Lee CK, Schmidt WC, Webster SS, Chen JW, O'Toole GA, Wong GCL. Broadcasting of amplitude- and frequency-modulated c-di-GMP signals facilitates cooperative surface commitment in bacterial lineages. Proc Natl Acad Sci U S A 2022; 119:e2112226119. [PMID: 35064082 PMCID: PMC8795499 DOI: 10.1073/pnas.2112226119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.
Collapse
Affiliation(s)
- Calvin K Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - William C Schmidt
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Shanice S Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jonathan W Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
14
|
H-NOX proteins in the virulence of pathogenic bacteria. Biosci Rep 2021; 42:230559. [PMID: 34939646 PMCID: PMC8738867 DOI: 10.1042/bsr20212014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic–biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologs from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.
Collapse
|
15
|
Saeedi A, Cummings NJ, McLean D, Connerton IF, Connerton PL. Venatorbacter cucullus gen. nov sp. nov a novel bacterial predator. Sci Rep 2021; 11:21393. [PMID: 34725408 PMCID: PMC8560859 DOI: 10.1038/s41598-021-00865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
A novel Gram-stain negative, aerobic, halotolerant, motile, rod-shaped, predatory bacterium ASxL5T, was isolated from a bovine slurry tank in Nottinghamshire, UK using Campylobacter hyointestinalis as prey. Other Campylobacter species and members of the Enterobacteriaceae were subsequently found to serve as prey. Weak axenic growth on Brain Heart Infusion agar was achieved upon subculture without host cells. The optimal growth conditions were 37 °C, at pH 7. Transmission electron microscopy revealed some highly unusual morphological characteristics related to prey availability. Phylogenetic analyses using 16S rRNA gene sequences showed that the isolate was related to members of the Oceanospirillaceae family but could not be classified clearly as a member of any known genus. Whole genome sequencing of ASxL5T confirmed the relationship to members the Oceanospirillaceae. Database searches revealed that several ASxL5T share 16S rRNA gene sequences with several uncultured bacteria from marine, and terrestrial surface and subsurface water. We propose that strain ASxL5T represents a novel species in a new genus. We propose the name Venatorbacter cucullus gen. nov., sp. nov. with ASxL5T as the type strain.
Collapse
Affiliation(s)
- Ahmed Saeedi
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Nicola J. Cummings
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Denise McLean
- grid.4563.40000 0004 1936 8868Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD UK
| | - Ian F. Connerton
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Phillippa L. Connerton
- grid.4563.40000 0004 1936 8868Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
16
|
Abstract
Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.
Collapse
|
17
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
18
|
Meek RW, Cadby IT, Lovering AL. Bdellovibrio bacteriovorus phosphoglucose isomerase structures reveal novel rigidity in the active site of a selected subset of enzymes upon substrate binding. Open Biol 2021; 11:210098. [PMID: 34375548 PMCID: PMC8354745 DOI: 10.1098/rsob.210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular 'hunter' attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI.
Collapse
Affiliation(s)
- R W Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - I T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - A L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Xu K, Shen D, Yang N, Chou S, Gomelsky M, Qian G. Coordinated control of the type IV pili and c-di-GMP-dependent antifungal antibiotic production in Lysobacter by the response regulator PilR. MOLECULAR PLANT PATHOLOGY 2021; 22:602-617. [PMID: 33709522 PMCID: PMC8035640 DOI: 10.1111/mpp.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 05/05/2023]
Abstract
In the soil gammaproteobacterium Lysobacter enzymogenes, a natural fungal predator, the response regulator PilR controls type IV pili (T4P)-mediated twitching motility as well as synthesis of the heat-stable antifungal factor (HSAF). Earlier we showed that PilR acts via the second messenger, c-di-GMP; however, the mechanism remained unknown. Here, we describe how PilR, c-di-GMP signalling, and HSAF synthesis are connected. We screened genes for putative diguanylate cyclases (c-di-GMP synthases) and found that PilR binds to the promoter region of lchD and down-regulates its transcription. The DNA-binding affinity of PilR, and therefore its repressor function, are enhanced by phosphorylation by its cognate histidine kinase, PilS. The lchD gene product is a diguanylate cyclase, and the decrease in LchD levels shifts the ratio of c-di-GMP-bound and c-di-GMP-free transcription factor Clp, a key activator of the HSAF biosynthesis operon expression. Furthermore, Clp directly interacts with LchD and enhances its diguanylate cyclase activity. Therefore, the PilS-PilR two-component system activates T4P-motility while simultaneously decreasing c-di-GMP levels and promoting HSAF production via the highly specific LchD-c-di-GMP-Clp pathway. Coordinated increase in motility and secretion of the "long-distance" antifungal weapon HSAF is expected to ensure safer grazing of L. enzymogenes on soil or plant surfaces, unimpeded by fungal competitors, or to facilitate bacterial preying on killed fungal cells. This study uncovered the mechanism of coregulated pili-based motility and production of an antifungal antibiotic in L. enzymogenes, showcased the expanded range of functions of the PilS-PilR system, and highlighted exquisite specificity in c-di-GMP-mediated circuits.
Collapse
Affiliation(s)
- Kangwen Xu
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Nianda Yang
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| | - Shan‐Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Mark Gomelsky
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests)Nanjing Agricultural UniversityNanjingP.R. China
| |
Collapse
|
20
|
Waso M, Reyneke B, Havenga B, Khan S, Khan W. Insights into Bdellovibrio spp. mechanisms of action and potential applications. World J Microbiol Biotechnol 2021; 37:85. [PMID: 33860852 DOI: 10.1007/s11274-021-03054-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Recent studies investigating Bdellovibrio spp. have found that although this predator predominantly preys on Gram-negative organisms, under certain conditions (nutrient/prey limitation), it will adapt to survive and grow axenically (without prey) or in the presence of Gram-positive bacterial prey. These advances in the understanding of predatory bacteria have stimulated a renewed interest in these organisms and the potential applications of Bdellovibrio spp. to the benefit of society. Early studies primarily focused on the application of predatory bacteria as "live antibiotics" in the medical field, probiotics in aquaculture and veterinary medicine and their use in agriculture. Additionally, studies have investigated their prevalence in wastewater and environmental sources. However, comprehending that Bdellovibrio spp. may also prey on and target Gram-positive organisms, implies that these predators could specifically be applied for the bioremediation or removal of mixed bacterial communities. Recent studies have also indicated that Bdellovibrio spp. may be useful in controlling food spoilage organisms and subsequently decrease our reliance on food additives. This review will thus highlight recent developments in understanding Bdellovibrio spp. predation strategies and focus on potential new applications of these organisms for water treatment, food preservation, enhancement of industrial processes, and in combination therapies with bacteriophages and/or antibiotics to combat multi-drug resistant organisms.
Collapse
Affiliation(s)
- Monique Waso
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
21
|
Yoon SH, Waters CM. The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Curr Opin Microbiol 2021; 60:96-103. [PMID: 33640793 DOI: 10.1016/j.mib.2021.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023]
Abstract
Cyclic dinucleotide (cdN) second messengers are essential for bacteria to sense and adapt to their environment. These signals were first discovered with the identification of 3'-5', 3'-5' cyclic di-GMP (c-di-GMP) in 1987, a second messenger that is now known to be the linchpin signaling pathway modulating bacterial motility and biofilm formation. In the past 15 years, three more cdNs were uncovered: 3'-5', 3'-5' cyclic di-AMP (c-di-AMP) and 3'-5', 3'-5' cyclic GMP-AMP (3',3' cGAMP) in bacteria and 2'-5', 3'-5' cyclic GMP-AMP (2',3' cGAMP) in eukaryotes. We now appreciate that bacteria can synthesize many varieties of cdNs from every ribonucleotide, and even cyclic trinucleotide (ctN) second messengers have been discovered. Here we highlight our current understanding of c-di-GMP and c-di-AMP in bacterial physiology and focus on recent advances in 3',3' cGAMP signaling effectors, its role in bacterial phage response, and the diversity of its synthase family.
Collapse
Affiliation(s)
- Soo Hun Yoon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824 USA.
| |
Collapse
|
22
|
Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE, Huppert A, Jurkevitch E. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. THE ISME JOURNAL 2021; 15:109-123. [PMID: 32884113 PMCID: PMC7852544 DOI: 10.1038/s41396-020-00764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yuval Kushmaro
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Seed-x., Magshimim, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
23
|
Caulton SG, Lovering AL. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr Opin Microbiol 2020; 56:74-80. [DOI: 10.1016/j.mib.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023]
|
24
|
Milner DS, Ray LJ, Saxon EB, Lambert C, Till R, Fenton AK, Sockett RE. DivIVA Controls Progeny Morphology and Diverse ParA Proteins Regulate Cell Division or Gliding Motility in Bdellovibrio bacteriovorus. Front Microbiol 2020; 11:542. [PMID: 32373080 PMCID: PMC7186360 DOI: 10.3389/fmicb.2020.00542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/12/2020] [Indexed: 01/12/2023] Open
Abstract
The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.
Collapse
Affiliation(s)
- David S Milner
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Luke J Ray
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emma B Saxon
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carey Lambert
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rob Till
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrew K Fenton
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Renee Elizabeth Sockett
- Laboratory C15, Division of Infections, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
25
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Lepore R, Kryshtafovych A, Alahuhta M, Veraszto HA, Bomble YJ, Bufton JC, Bullock AN, Caba C, Cao H, Davies OR, Desfosses A, Dunne M, Fidelis K, Goulding CW, Gurusaran M, Gutsche I, Harding CJ, Hartmann MD, Hayes CS, Joachimiak A, Leiman PG, Loppnau P, Lovering AL, Lunin VV, Michalska K, Mir-Sanchis I, Mitra AK, Moult J, Phillips GN, Pinkas DM, Rice PA, Tong Y, Topf M, Walton JD, Schwede T. Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins 2019; 87:1037-1057. [PMID: 31442339 PMCID: PMC6851490 DOI: 10.1002/prot.25805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
Abstract
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.
Collapse
Affiliation(s)
- Rosalba Lepore
- BSC-CNS Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Harshul A Veraszto
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Joshua C Bufton
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Alex N Bullock
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Hongnan Cao
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ambroise Desfosses
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | | - Celia W Goulding
- Department of Molecular Biology and Biochemistry; Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Karolina Michalska
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - A K Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of Maryland, Rockville, Maryland, USA
| | - George N Phillips
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Daniel M Pinkas
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College London, London, UK
| | - Jonathan D Walton
- Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Torsten Schwede
- Biozentrum University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Meek RW, Cadby IT, Moynihan PJ, Lovering AL. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Nat Commun 2019; 10:4086. [PMID: 31501441 PMCID: PMC6733907 DOI: 10.1038/s41467-019-12051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
The bacterial second messenger cyclic-di-GMP is a widespread, prominent effector of lifestyle change. An example of this occurs in the predatory bacterium Bdellovibrio bacteriovorus, which cycles between free-living and intraperiplasmic phases after entering (and killing) another bacterium. The initiation of prey invasion is governed by DgcB (GGDEF enzyme) that produces cyclic-di-GMP in response to an unknown stimulus. Here, we report the structure of DgcB, and demonstrate that the GGDEF and sensory forkhead-associated (FHA) domains form an asymmetric dimer. Our structures indicate that the FHA domain is a consensus phosphopeptide sensor, and that the ligand for activation is surprisingly derived from the N-terminal region of DgcB itself. We confirm this hypothesis by determining the structure of a FHA:phosphopeptide complex, from which we design a constitutively-active mutant (confirmed via enzyme assays). Our results provide an understanding of the stimulus driving DgcB-mediated prey invasion and detail a unique mechanism of GGDEF enzyme regulation. The initiation of prey invasion by the predatory bacterium Bdellovibrio bacteriovorus is governed by the activity of the diguanlylate cyclase DgcB. Here the authors show that the stimulus regulating DgcB activity is a phosphopeptide derived from DgcB itself and present the crystal structures of full-length DgcB and of its empty and peptide-bound sensor domain.
Collapse
Affiliation(s)
- Richard W Meek
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Patrick J Moynihan
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
28
|
Cadby IT, Basford SM, Nottingham R, Meek R, Lowry R, Lambert C, Tridgett M, Till R, Ahmad R, Fung R, Hobley L, Hughes WS, Moynihan PJ, Sockett RE, Lovering AL. Nucleotide signaling pathway convergence in a cAMP-sensing bacterial c-di-GMP phosphodiesterase. EMBO J 2019; 38:e100772. [PMID: 31355487 PMCID: PMC6717892 DOI: 10.15252/embj.2018100772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial usage of the cyclic dinucleotide c‐di‐GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c‐di‐GMP metabolism, particularly on regulatory mechanisms governing control of EAL c‐di‐GMP phosphodiesterases. Herein, we provide high‐resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full‐length cAMP‐bound form reveals the sensory N‐terminus to be a domain‐swapped variant of the cNMP/CRP family, which in the cAMP‐activated state holds the C‐terminal EAL enzyme in a phosphodiesterase‐active conformation. Using a truncation mutant, we trap both a half‐occupied and inactive apo‐form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c‐di‐GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c‐di‐GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing “action potentials” to be generated by each GGDEF protein to effect their specific functions.
Collapse
Affiliation(s)
- Ian T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sarah M Basford
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Ruth Nottingham
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Richard Meek
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rebecca Lowry
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Carey Lambert
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Matthew Tridgett
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rob Till
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rashidah Ahmad
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Rowena Fung
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Laura Hobley
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - William S Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Patrick J Moynihan
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - R Elizabeth Sockett
- Centre for Genetics and Genomics, School of Biology, Medical School, Queen's Medical Centre, Nottingham University, Nottingham, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Xu G, Han S, Huo C, Chin KH, Chou SH, Gomelsky M, Qian G, Liu F. Signaling specificity in the c-di-GMP-dependent network regulating antibiotic synthesis in Lysobacter. Nucleic Acids Res 2019; 46:9276-9288. [PMID: 30202891 PMCID: PMC6182147 DOI: 10.1093/nar/gky803] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Enzymes controlling intracellular second messengers in bacteria, such as c-di-GMP, often affect some but not other targets. How such specificity is achieved is understood only partially. Here, we present a novel mechanism that enables specific c-di-GMP-dependent inhibition of the antifungal antibiotic production. Expression of the biosynthesis operon for Heat-Stable Antifungal Factor, HSAF, in Lysobacter enzymogenes occurs when the transcription activator Clp binds to two upstream sites. At high c-di-GMP levels, Clp binding to the lower-affinity site is compromised, which is sufficient to decrease gene expression. We identified a weak c-di-GMP phosphodiesterase, LchP, that plays a disproportionately high role in HSAF synthesis due to its ability to bind Clp. Further, Clp binding stimulates phosphodiesterase activity of LchP. An observation of a signaling complex formed by a c-di-GMP phosphodiesterase and a c-di-GMP-binding transcription factor lends support to the emerging paradigm that such signaling complexes are common in bacteria, and that bacteria and eukaryotes employ similar solutions to the specificity problem in second messenger-based signaling systems.
Collapse
Affiliation(s)
- Gaoge Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210014, P.R. China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Sen Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210014, P.R. China
| | - Cuimei Huo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210014, P.R. China
| | - Ko-Hsin Chin
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
30
|
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium that can kill a wide range of Gram-negative bacteria, including many human pathogens. Given the global rise of antibiotic resistance and dearth of new antibiotics discovered in the past 30 years, this predator has potential as an alternative to traditional antibiotics. For many years, B. bacteriovorus research was hampered by a lack of genetic tools, and the genetic mechanisms of predation have only recently begun to be established. Here, we comprehensively identify and characterize predator genes required for killing bacterial prey, as well as genes that interfere in this process, which may allow us to design better therapeutic predators. Based on our study, we and other researchers may ultimately be able to genetically engineer strains that have improved killing rates, target specific species of prey, or preferentially target prey in the planktonic or biofilm state. Bdellovibrio bacteriovorus is a bacterial predator capable of killing and replicating inside most Gram-negative bacteria, including antibiotic-resistant pathogens. Despite growing interest in this organism as a potential therapeutic, many of its genes remain uncharacterized. Here, we perform a high-throughput genetic screen with B. bacteriovorus using transposon sequencing (Tn-seq) to explore the genetic requirements of predation. Two hundred one genes were deemed essential for growth in the absence of prey, whereas over 100 genes were found to be specifically required for predative growth on the human pathogens Vibrio cholerae and Escherichia coli in both planktonic and biofilm states. To further this work, we created an ordered-knockout library in B. bacteriovorus and developed new high-throughput techniques to characterize the mutants by their stage of deficiency in the predator life cycle. Using microscopy and flow cytometry, we confirmed 10 mutants defective in prey attachment and eight mutants defective in prey rounding. The majority of these genes are hypothetical and previously uncharacterized. Finally, we propose new nomenclature to group B. bacteriovorus mutants into classes based on their stage of predation defect. These results contribute to our basic understanding of bacterial predation and may be useful for harnessing B. bacteriovorus to kill harmful pathogens in the clinical setting.
Collapse
|
31
|
Hallberg ZF, Chan CH, Wright TA, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 2019; 8:43959. [PMID: 30964001 PMCID: PMC6456294 DOI: 10.7554/elife.43959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3′,3′-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported that some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future.
Collapse
Affiliation(s)
- Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Chi Ho Chan
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Todd A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, United States.,Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, United States
| | - Kevin W Doxzen
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - James J Park
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, Minnesota, United States
| | - Ming C Hammond
- Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of Utah, Salt Lake City, United States
| |
Collapse
|
32
|
Lowry RC, Milner DS, Al-Bayati AMS, Lambert C, Francis VI, Porter SL, Sockett RE. Evolutionary diversification of the RomR protein of the invasive deltaproteobacterium, Bdellovibrio bacteriovorus. Sci Rep 2019; 9:5007. [PMID: 30899045 PMCID: PMC6428892 DOI: 10.1038/s41598-019-41263-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
Bdellovibrio bacteriovorus is a predatory deltaproteobacterium that encounters individual Gram-negative prey bacteria with gliding or swimming motility, and then is able to invade such prey cells via type IVa pilus-dependent mechanisms. Movement control (pili or gliding) in other deltaproteobacteria, such as the pack hunting Myxococcus xanthus, uses a response regulator protein, RomRMx (which dynamically relocalises between the cell poles) and a GTPase, MglAMx, previously postulated as an interface between the FrzMx chemosensory system and gliding or pilus-motility apparatus, to produce regulated bidirectional motility. In contrast, B. bacteriovorus predation is a more singular encounter between a lone predator and prey; contact is always via the piliated, non-flagellar pole of the predator, involving MglABd, but no Frz system. In this new study, tracking fluorescent RomRBd microscopically during predatory growth shows that it does not dynamically relocalise, in contrast to the M. xanthus protein; instead having possible roles in growth events. Furthermore, transcriptional start analysis, site-directed mutagenesis and bacterial two-hybrid interaction studies, indicate an evolutionary loss of RomRBd activation (via receiver domain phosphorylation) in this lone hunting bacterium, demonstrating divergence from its bipolar role in motility in pack-hunting M. xanthus and further evolution that may differentiate lone from pack predators.
Collapse
Affiliation(s)
- Rebecca C Lowry
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - David S Milner
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Asmaa M S Al-Bayati
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.,Northern Technical University, Mosul, Iraq
| | - Carey Lambert
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| | - R E Sockett
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom.
| |
Collapse
|
33
|
Recent Advances and Current Trends in Nucleotide Second Messenger Signaling in Bacteria. J Mol Biol 2019; 431:908-927. [PMID: 30668970 DOI: 10.1016/j.jmb.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 02/01/2023]
Abstract
The "International Symposium on Nucleotide Second Messenger Signaling in Bacteria" (September 30-October 3, 2018, Berlin), which was organized within the framework of DFG Priority Programme 1879 (www.spp1879.de), brought together 125 participants from 20 countries to discuss recent progress and future trends in this field. Even 50 years after its discovery, (p)ppGpp is venturing into exciting new fields, especially in gram-positive bacteria. After triggering the current renaissance in bacterial second messenger research, c-di-GMP is becoming ever more global with abounding new molecular mechanisms of action and physiological functions. The more recently discovered c-di-AMP is rapidly catching up and has now been found even in archaea, with its function in osmotic homeostasis being conserved across kingdom boundaries. Small modules associated with mobile genetic elements, which make and react to numerous novel mixed cyclic dinucleotides, seem to roam around rather freely in the bacterial world. Finally, many novel and old nucleotide molecules are still lurking around in search of a function. Across many talks it became apparent that (p)ppGpp, c-di-GMP and GTP/ATP can share and compete for binding sites (e.g., the Walker A motif in GTP/ATPases) with intriguing regulatory consequences, thus contributing to the emergent trend of systemwide networks that interconnect diverse signaling nucleotides. Overall, this inspiring conference made it clear that second messenger signaling is currently one of the most dynamic and exciting areas in microbial molecular biology and physiology, with major impacts ranging from microbial systems biology and ecology to infection biology.
Collapse
|
34
|
Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil. Int J Genomics 2018; 2018:9402073. [PMID: 29850478 PMCID: PMC5941755 DOI: 10.1155/2018/9402073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008) and 95-97% identity (a pairwise distance of 0.043) with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit) locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.
Collapse
|
35
|
Skotnicka D, Søgaard-Andersen L. Type IV Pili-Dependent Motility as a Tool to Determine the Activity of c-di-GMP Modulating Enzymes in Myxococcus xanthus. Methods Mol Biol 2018; 1657:157-165. [PMID: 28889293 DOI: 10.1007/978-1-4939-7240-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates multiple processes in bacteria including cellular motility. The rod-shaped Myxococcus xanthus cells move in the direction of their long axis using two distinct motility systems: type IV pili (T4P)-dependent motility and gliding motility. Manipulation of the c-di-GMP level by expression of either an active, heterologous diguanylate cyclase or an active, heterologous phosphodiesterase causes defects in T4P-dependent motility without affecting gliding motility. As both an increased and a decreased level of c-di-GMP affect T4P-dependent motility, M. xanthus represents a good model system to assess enzyme activity of diguanylate cyclases and phosphodiesterases using T4P-dependent motility as a readout. Here, we describe the assay, which allows correlating diguanylate cyclase and phosphodiesterase activity with T4P-dependent motility in M. xanthus.
Collapse
Affiliation(s)
- Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
36
|
Jashnsaz H, Anderson GG, Pressé S. Statistical signatures of a targeted search by bacteria. Phys Biol 2017; 14:065002. [PMID: 28809162 DOI: 10.1088/1478-3975/aa84ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium's natural habitat, striking phenomena-such as the volcano effect or banding-have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium's diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Physics, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, United States of America
| | | | | |
Collapse
|
37
|
Dwidar M, Im H, Seo JK, Mitchell RJ. Attack-Phase Bdellovibrio bacteriovorus Responses to Extracellular Nutrients Are Analogous to Those Seen During Late Intraperiplasmic Growth. MICROBIAL ECOLOGY 2017; 74:937-946. [PMID: 28601973 DOI: 10.1007/s00248-017-1003-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Bdellovibrio bacteriovorus is a predatory bacterium which lives by invading the periplasm of gram-negative bacteria and consuming them from within. This predator was thought to be dependent upon prey for nutrients since it lacks genes encoding for critical enzymes involved in amino acid biosynthesis. This study, however, found that planktonic attack-phase predators are not just dependent upon prey for nutrients, but rather, they respond to nutrients in the surrounding medium and, subsequently, synthesize and secrete proteases in a nutrient-dependent manner. The major secreted proteases were identified through mass spectrometry analyses. Subsequent RT-qPCR analyses found that the nutrient-induced proteases are similar to those expressed within the prey periplasm during the late intraperiplasmic growth phase. Furthermore, RNA sequencing found that incubating the planktonic attack-phase cells in a nutritious environment for a short period of time (4 h) changes its gene expression pattern to a status that is akin to the late intraperiplasmic phase, with more than 94% of the genes previously identified as being late intraperiplasmic-specific also being induced by nutrient broth in this study. This strong correlation between the gene expression patterns hints that the availability of hydrolyzed prey cell components to the predator is likely the stimulus controlling the expression of late intraperiplasmic B. bacteriovorus genes during predation.
Collapse
Affiliation(s)
- Mohammed Dwidar
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea.
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Hansol Im
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
38
|
Optogenetic Module for Dichromatic Control of c-di-GMP Signaling. J Bacteriol 2017; 199:JB.00014-17. [PMID: 28320886 DOI: 10.1128/jb.00014-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
Many aspects of bacterial physiology and behavior, including motility, surface attachment, and the cell cycle, are controlled by cyclic di-GMP (c-di-GMP)-dependent signaling pathways on the scale of seconds to minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing the expression of genes encoding c-di-GMP-synthetic (diguanylate cyclases) and -degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared-light-regulated diguanylate cyclase, BphS, was engineered previously, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue-light-activated phosphodiesterase EB1 can be used in combination with the red/near-infrared-light-regulated diguanylate cyclase BphS for the bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, the cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occur at a fast (seconds-to-minutes) pace. Interrogation of these processes at high temporal and spatial resolution using chemicals is difficult or impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue-light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared-light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.
Collapse
|
39
|
Jashnsaz H, Al Juboori M, Weistuch C, Miller N, Nguyen T, Meyerhoff V, McCoy B, Perkins S, Wallgren R, Ray BD, Tsekouras K, Anderson GG, Pressé S. Hydrodynamic Hunters. Biophys J 2017; 112:1282-1289. [PMID: 28355554 PMCID: PMC5376100 DOI: 10.1016/j.bpj.2017.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022] Open
Abstract
The Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey’s future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV’s search space for prey. We do so by showing that BV’s dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV’s prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV’s search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV’s search for individual prey remains random, as suggested in the literature, but confined, however—by generic hydrodynamic forces—to reduced dimensionality.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Mohammed Al Juboori
- Biomedical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Corey Weistuch
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Nicholas Miller
- Biomedical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Tyler Nguyen
- Stark Neurosciences Research Institute, Indiana University School of Medicine (ISUM), Indianapolis, Indiana
| | - Viktoria Meyerhoff
- Mechanical Engineering, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Bryan McCoy
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Stephanie Perkins
- Department of Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Ross Wallgren
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Bruce D Ray
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Konstantinos Tsekouras
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana
| | - Gregory G Anderson
- Department of Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana.
| | - Steve Pressé
- Department of Physics, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana; Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana; Cellular and Integrative Physiology Department, Indiana University School of Medicine (IUSM), Indianapolis, Indiana.
| |
Collapse
|
40
|
Jurkevitch É, Jacquet S. [Bdellovibrio and like organisms: outstanding predators!]. Med Sci (Paris) 2017; 33:519-527. [PMID: 28612728 DOI: 10.1051/medsci/20173305016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obligate predatory bacteria, i.e. bacteria requiring a Gram negative prey cell in order to complete their cell cycle, belong to the polyphyletic group referred to as the Bdellovibrio And Like Organisms (BALO). Predatory interactions between bacteria are complex, yet their dynamics and impact on bacterial communities in the environment are becoming better understood. BALO have unique life cycles: they grow epibiotically with the predator remaining attached to the prey's envelope, dividing in a binary manner or periplasmically, i.e. by penetrating the prey's periplasm to generate a number of progeny cells. The periplasmic life cycle includes unique gene and protein patterns and unique signaling features. These ecological and cellular features, along with applications of the BALO in the medical, agricultural and environmental fields are surveyed.
Collapse
Affiliation(s)
- Édouard Jurkevitch
- Faculté d'Agriculture, de l'Alimentation et de l'Environnement, Université Hébraïque de Jérusalem, Rehovot, Israël
| | - Stéphan Jacquet
- INRA, UMR CARRTEL, 75, avenue de Corzent, 74200 Thonon-les-Bains, France
| |
Collapse
|
41
|
Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. J Bacteriol 2017; 199:JB.00790-16. [PMID: 28031279 DOI: 10.1128/jb.00790-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP was the first cyclic dinucleotide second messenger described, presaging the discovery of additional cyclic dinucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, and they include both enzymatically active and inactive members, with a subset involved in synthesis and degradation of other cyclic dinucleotides. Here, we summarize current knowledge of sequence and structural variations that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL, and HD-GYP domain proteins.
Collapse
|
42
|
Abstract
Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).
Collapse
|
43
|
Pécastaings S, Allombert J, Lajoie B, Doublet P, Roques C, Vianney A. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. BIOFOULING 2016; 32:935-948. [PMID: 27494738 DOI: 10.1080/08927014.2016.1212988] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species.
Collapse
Affiliation(s)
- Sophie Pécastaings
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Julie Allombert
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| | - Barbora Lajoie
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Patricia Doublet
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| | - Christine Roques
- a Laboratoire de Génie chimique UMR 5503 , UPS, Université de Toulouse , Toulouse , France
| | - Anne Vianney
- b CIRI, International Center for Infectiology Research , Legionella Pathogenesis Group, Université de Lyon , Lyon , France
- c Inserm , Lyon , France
- d Ecole Normale Supérieure de Lyon , Lyon , France
- e Université Lyon 1, CIRI, International Center for Infectiology Research , Lyon , France
- f CNRS , Lyon , France
| |
Collapse
|
44
|
Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus. PLoS Genet 2016; 12:e1006080. [PMID: 27214040 PMCID: PMC4877007 DOI: 10.1371/journal.pgen.1006080] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.
Collapse
Affiliation(s)
- Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregory T. Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Tobias Petters
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eleftheria Trampari
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jacob G. Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
- * E-mail: (MS); (LSA)
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail: (MS); (LSA)
| |
Collapse
|
45
|
Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae. BMC Genomics 2016; 17:345. [PMID: 27165035 PMCID: PMC4862043 DOI: 10.1186/s12864-016-2657-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Background Plant-pathogen interactions at early stages of infection are important to the fate of interaction. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, which is a devastating disease in rice. Although in vivo and in vitro systems have been developed to study rice-Xoo interactions, both systems have limitations. The resistance mechanisms in rice can be better studied by the in vivo approach, whereas the in vitro systems are suitable for pathogenicity studies on Xoo. The current in vitro system uses minimal medium to activate the pathogenic signal (expression of pathogenicity-related genes) of Xoo, but lacks rice-derived factors needed for Xoo activation. This fact emphasizes the need of developing a new in vitro system that allow for an easy control of both pathogenic activation and for the experiment itself. Results We employed an in vitro system that can activate pathogenicity-related genes in Xoo using rice leaf extract (RLX) and combined the in vitro assay with RNA-Seq to analyze the time-resolved genome-wide gene expression of Xoo. RNA-Seq was performed with samples from seven different time points within 1 h post-RLX treatment and the expression of up- or downregulated genes in RNA-Seq was validated by qRT-PCR. Global analysis of gene expression and regulation revealed the most dramatic changes in functional categories of genes related to inorganic ion transport and metabolism, and cell motility. Expression of many pathogenicity-related genes was induced within 15 min upon contact with RLX. hrpG and hrpX expression reached the maximum level within 10 and 15 min, respectively. Chemotaxis and flagella biosynthesis-related genes and cyclic-di-GMP controlling genes were downregulated for 10 min and were then upregulated. Genes related to inorganic ion uptake were upregulated within 5 min. We introduced a non-linear regression fit to generate continuous time-resolved gene expression levels and tested the essentiality of the transcriptionally upregulated genes by a pathogenicity assay of lesion length using single-gene knock-out Xoo strains. Conclusions The in vitro system combined with RNA-Seq generated a genome-wide time-resolved pathogenic gene expression profile within 1 h of initial rice-Xoo interactions, demonstrating the expression order and interaction dependency of pathogenic genes. This combined system can be used as a novel tool to study the initial interactions between rice and Xoo during bacterial blight progression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2657-7) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. J Bacteriol 2016; 198:15-26. [PMID: 26055111 DOI: 10.1128/jb.00331-15] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany)brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i)c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology,with major impacts in research fields ranging from human health to microbial ecology.
Collapse
|
47
|
Yang F, Qian S, Tian F, Chen H, Hutchins W, Yang CH, He C. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. J Appl Microbiol 2016; 120:1646-57. [PMID: 26929398 DOI: 10.1111/jam.13115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
AIMS Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger that is synthesized by diguanylate cyclase (DGC) with the GGDEF-domain, regulates diverse virulence phenotypes in pathogenic bacteria. Although 11 genes encoding GGDEF-domain proteins have been shown in the genome of Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99(A) , the causal pathogen of bacterial blight of rice, however, little is known about their roles in the c-di-GMP regulation of virulence in the pathogen. GdpX1, one of the GGDEF-domain proteins in Xoo was investigated in this study to reveal its regulatory function of bacterial virulence expression through genetic analysis. METHODS AND RESULTS GdpX1 was functionally characterized in virulence expression through deletion and overexpression analysis. Bioinformatics analysis revealed the GGDEF-domain in GdpX1 was well conserved, indicating it is a putative DGC. Deletion of gdpX1 resulted in significant increases in virulence, exopolysaccharide (EPS) production and flagellar motility. In contrast, overexpression of gdpX1 dramatically reduced these virulence phenotypes. qRT-PCR analysis showed genes related to the type III secretion system (T3SS), EPS synthesis, and flagellar motility, were up-regulated in ∆gdpX1 and down-regulated in the gdpX1-overexpressed strains. In addition, overexpression of gdpX1 promoted biofilm formation and xylanase activity. CONCLUSION GdpX1 is the first GGDEF-domain protein functionally characterized in Xoo, which functions as a negative regulator of bacterial virulence via suppression of virulence-related gene transcription. SIGNIFICANCE AND IMPACT OF THE STUDY Identification and functional characterization of GdpX1 provided additional insights into molecular mechanisms of c-di-GMP regulation of bacterial virulence expression.
Collapse
Affiliation(s)
- F Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Qian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - F Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Hutchins
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - C-H Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - C He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP). Proc Natl Acad Sci U S A 2016; 113:1790-5. [PMID: 26839412 DOI: 10.1073/pnas.1515287113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling.
Collapse
|
49
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
50
|
Cell-cycle progress in obligate predatory bacteria is dependent upon sequential sensing of prey recognition and prey quality cues. Proc Natl Acad Sci U S A 2015; 112:E6028-37. [PMID: 26487679 DOI: 10.1073/pnas.1515749112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Predators feed on prey to acquire the nutrients necessary to sustain their survival, growth, and replication. In Bdellovibrio bacteriovorus, an obligate predator of Gram-negative bacteria, cell growth and replication are tied to a shift from a motile, free-living phase of search and attack to a sessile, intracellular phase of growth and replication during which a single prey cell is consumed. Engagement and sustenance of growth are achieved through the sensing of two unidentified prey-derived cues. We developed a novel ex vivo cultivation system for B. bacteriovorus composed of prey ghost cells that are recognized and invaded by the predator. By manipulating their content, we demonstrated that an early cue is located in the prey envelope and a late cue is found within the prey soluble fraction. These spatially and temporally separated cues elicit discrete and combinatory regulatory effects on gene transcription. Together, they delimit a poorly characterized transitory phase between the attack phase and the growth phase, during which the bdelloplast (the invaded prey cell) is constructed. This transitory phase constitutes a checkpoint in which the late cue presumably acts as a determinant of the prey's nutritional value before the predator commits. These regulatory adaptations to a unique bacterial lifestyle have not been reported previously.
Collapse
|