1
|
Alberti D, Guarniero M, Maciola AK, Dotta E, Pasqual G. Engineering Ligand and Receptor Pairs with LIPSTIC to Track Cell-Cell Interactions. Curr Protoc 2021; 1:e311. [PMID: 34870906 PMCID: PMC7613713 DOI: 10.1002/cpz1.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between different cell types are critical for a plethora of biological processes, such as the immune response. We recently developed a novel technology, called LIPSTIC (labeling of immune partnership by SorTagging intercellular contacts), that allows for identifying cells undergoing specific interactions thanks to an enzymatic labeling reaction. Our work demonstrated the use of this technology to monitor interactions between immune cells, both in vitro and in vivo, by the genetic engineering of CD40 and CD40L, an essential costimulatory axis between antigen-presenting cells and T cells. Here we describe protocols to design novel LIPSTIC-engineered ligand and receptor pairs, clone constructs into retroviral expression vector, perform their initial validation, and use them to measure interactions ex vivo. This information will be useful to investigators interested in exploiting the LIPSTIC technology to track their favorite immune interaction. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Design of LIPSTIC-engineered ligand and receptor pairs Basic Protocol 2: Cloning of LIPSTIC-engineered ligand and receptor pairs Basic Protocol 3: Validation of LIPSTIC-engineered ligand and receptor pairs in 293T cells Basic Protocol 4: Measuring interaction with LIPSTIC in immune cells ex vivo.
Collapse
Affiliation(s)
- Dafne Alberti
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Michelle Guarniero
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Agnieszka K. Maciola
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Enrico Dotta
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
2
|
Kordbacheh S, Kasko AM. Peptide and protein engineering by modification of backbone and sidechain functional groups. POLYM INT 2021. [DOI: 10.1002/pi.6208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shadi Kordbacheh
- Department of Bioengineering University of California Los Angeles CA USA
| | - Andrea M Kasko
- Department of Bioengineering University of California Los Angeles CA USA
- California Nanosystems Institute Los Angeles CA USA
| |
Collapse
|
3
|
Live Visualization of Hemagglutinin Dynamics During Infection by Using a Novel Reporter Influenza A Virus. Viruses 2020; 12:v12060687. [PMID: 32604762 PMCID: PMC7354568 DOI: 10.3390/v12060687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Live visualization of influenza A virus (IAV) structural proteins during viral infection in cells is highly sought objective to study different aspects of the viral replication cycle. To achieve this, we engineered an IAV to express a Tetra Cysteine tag (TC tag) from hemagglutinin (HA), which allows intracellular labeling of the engineered HA protein with biarsenic dyes and subsequent fluorescence detection. Using such constructs, we rescued a recombinant IAV with TC tag inserted in HA, in A/Puerto Rico/8/1934(H1N1) background (HA-TC). This recombinant HA-TC tag reporter IAV was replication-competent; however, as compared to wild type PR8 IAV, it was attenuated in multicycle replication. We confirmed expression of TC tag and biarsenical labeling of HA by immunofluorescence assay in cells infected with an HA-TC tag reporter IAV. Further, we used this reporter virus to visualize HA expression and translocation in IAV infected cells by live confocal imaging. We also tested the utility of the HA-TC IAV in testing chemical inhibitors of the HA translocation. Overall, HA-TC IAV is a versatile tool that will be useful for studying viral life cycle events, virus-host interactions, and anti-viral testing.
Collapse
|
4
|
Abstract
Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.
Collapse
|
5
|
Tam JP, Chan NY, Liew HT, Tan SJ, Chen Y. Peptide asparaginyl ligases—renegade peptide bond makers. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9648-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
7
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Vahey MD, Fletcher DA. Low-Fidelity Assembly of Influenza A Virus Promotes Escape from Host Cells. Cell 2018; 176:281-294.e19. [PMID: 30503209 DOI: 10.1016/j.cell.2018.10.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses inhabit a wide range of host environments using a limited repertoire of protein components. Unlike viruses with stereotyped shapes, influenza produces virions with significant morphological variability even within clonal populations. Whether this tendency to form pleiomorphic virions is coupled to compositional heterogeneity and whether it affects replicative fitness remains unclear. Here, we address these questions by developing a strain of influenza A virus amenable to rapid compositional characterization through quantitative, site-specific labeling of viral proteins. Using this strain, we find that influenza A produces virions with broad variations in size and composition from even single infected cells. This phenotypic variability contributes to virus survival during environmental challenges, including exposure to antivirals. Complementing genetic adaptations that act over larger populations and longer times, this "low-fidelity" assembly of influenza A virus allows small populations to survive environments that fluctuate over individual replication cycles.
Collapse
Affiliation(s)
- Michael D Vahey
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; University of California, Berkeley/University of California, San Francisco Graduate Group in Bioengineering, Berkeley, CA 94720, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Pishesha N, Ingram JR, Ploegh HL. Sortase A: A Model for Transpeptidation and Its Biological Applications. Annu Rev Cell Dev Biol 2018; 34:163-188. [PMID: 30110557 DOI: 10.1146/annurev-cellbio-100617-062527] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular biologists and chemists alike have long sought to modify proteins with substituents that cannot be installed by standard or even advanced genetic approaches. We here describe the use of transpeptidases to achieve these goals. Living systems encode a variety of transpeptidases and peptide ligases that allow for the enzyme-catalyzed formation of peptide bonds, and protein engineers have used directed evolution to enhance these enzymes for biological applications. We focus primarily on the transpeptidase sortase A, which has become popular over the past few years for its ability to perform a remarkably wide variety of protein modifications, both in vitro and in living cells.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Hidde L Ploegh
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
10
|
Sakin V, Paci G, Lemke EA, Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 2016; 590:1896-914. [PMID: 26987299 DOI: 10.1002/1873-3468.12131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
11
|
Florian PE, Rouillé Y, Ruta S, Nichita N, Roseanu A. Recent advances in human viruses imaging studies. J Basic Microbiol 2016; 56:591-607. [PMID: 27059598 DOI: 10.1002/jobm.201500575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Paula Ecaterina Florian
- Department of ; Ligand-Receptor Interactions; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Yves Rouillé
- Center for Infection and Immunity of Lille (CIIL); Inserm U1019; CNRS UMR8204; Institut Pasteur de Lille; Université Lille Nord de France; Lille France
| | - Simona Ruta
- Department of Emergent Diseases; Stefan S. Nicolau Institute of Virology; Bucharest 030304 Romania
| | - Norica Nichita
- Department of Viral Glycoproteins; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| | - Anca Roseanu
- Department of ; Ligand-Receptor Interactions; Institute of Biochemistry of the Romanian Academy; Bucharest Romania
| |
Collapse
|
12
|
Kim H, Siu KH, Raeeszadeh-Sarmazdeh M, Sun Q, Chen Q, Chen W. Bioengineering strategies to generate artificial protein complexes. Biotechnol Bioeng 2015; 112:1495-505. [DOI: 10.1002/bit.25637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | | | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
13
|
Swee LK, Lourido S, Bell GW, Ingram JR, Ploegh HL. One-step enzymatic modification of the cell surface redirects cellular cytotoxicity and parasite tropism. ACS Chem Biol 2015; 10:460-5. [PMID: 25360987 PMCID: PMC4478597 DOI: 10.1021/cb500462t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Surface display of engineered proteins
has many useful applications.
The expression of a synthetic chimeric antigen receptor composed of
an extracellular tumor-specific antibody fragment linked to a cytosolic
activating motif in engineered T cells is now considered a viable
approach for the treatment of leukemias. The risk of de novo tumor development, inherent in the transfer of genetically engineered
cells, calls for alternative approaches for the functionalization
of the lymphocyte plasma membrane. We demonstrate the conjugation
of LPXTG-tagged probes and LPXTG-bearing proteins to endogenous acceptors
at the plasma membrane in a single step using sortase A. We successfully
conjugated biotin probes not only to mouse hematopoietic cells but
also to yeast cells, 293T cells, and Toxoplasma gondii. Installation of single domain antibodies on activated CD8 T cell
redirects cell-specific cytotoxicity to cells that bear the relevant
antigen. Likewise, conjugation of Toxoplasma gondii with single domain antibodies targets the pathogen to cells that
express the antigen recognized by these single domain antibodies.
This simple and robust enzymatic approach enables engineering of the
plasma membrane for research or therapy under physiological reaction
conditions that ensure the viability of the modified cells.
Collapse
Affiliation(s)
- Lee Kim Swee
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Sebastian Lourido
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - George W. Bell
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Jessica R. Ingram
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| | - Hidde L. Ploegh
- Whitehead Institute
for Biomedical Research, 9 Cambridge
Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 2014; 89:2792-800. [PMID: 25540369 DOI: 10.1128/jvi.02693-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.
Collapse
|
15
|
Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection. Cell Host Microbe 2014; 14:510-21. [PMID: 24237697 DOI: 10.1016/j.chom.2013.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
Several enveloped viruses exploit host pathways, such as the cellular endosomal sorting complex required for transport (ESCRT) machinery, for their assembly and release. The influenza A virus (IAV) matrix protein binds to the ESCRT-I complex, although the involvement of early ESCRT proteins such as Tsg101 in IAV trafficking remain to be established. We find that Tsg101 can facilitate IAV trafficking, but this is effectively restricted by the interferon (IFN)-stimulated protein ISG15. Cytosol from type I IFN-treated cells abolished IAV hemagglutinin (HA) transport to the cell surface in infected semi-intact cells. This inhibition required Tsg101 and could be relieved with deISGylases. Tsg101 is itself ISGylated in IFN-treated cells. Upon infection, intact Tsg101-deficient cells obtained by CRISPR-Cas9 genome editing were defective in the surface display of HA and for infectious virion release. These data support the IFN-induced generation of a Tsg101- and ISG15-dependent checkpoint in the secretory pathway that compromises influenza virus release.
Collapse
|
16
|
Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci U S A 2014; 111:10131-6. [PMID: 24982154 DOI: 10.1073/pnas.1409861111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We developed modified RBCs to serve as carriers for systemic delivery of a wide array of payloads. These RBCs contain modified proteins on their plasma membrane, which can be labeled in a sortase-catalyzed reaction under native conditions without inflicting damage to the target membrane or cell. Sortase accommodates a wide range of natural and synthetic payloads that allow modification of RBCs with substituents that cannot be encoded genetically. As proof of principle, we demonstrate site-specific conjugation of biotin to in vitro-differentiated mouse erythroblasts as well as to mature mouse RBCs. Thus modified, RBCs remain in the bloodstream for up to 28 d. A single domain antibody attached enzymatically to RBCs enables them to bind specifically to target cells that express the antibody target. We extend these experiments to human RBCs and demonstrate efficient sortase-mediated labeling of in vitro-differentiated human reticulocytes.
Collapse
|
17
|
Avalos AM, Bilate AM, Witte MD, Tai AK, He J, Frushicheva MP, Thill PD, Meyer-Wentrup F, Theile CS, Chakraborty AK, Zhuang X, Ploegh HL. Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells. ACTA ACUST UNITED AC 2014; 211:365-79. [PMID: 24493799 PMCID: PMC3920557 DOI: 10.1084/jem.20131603] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monovalent engagement can trigger BCR signal transduction, and fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition. Valency requirements for B cell activation upon antigen encounter are poorly understood. OB1 transnuclear B cells express an IgG1 B cell receptor (BCR) specific for ovalbumin (OVA), the epitope of which can be mimicked using short synthetic peptides to allow antigen-specific engagement of the BCR. By altering length and valency of epitope-bearing synthetic peptides, we examined the properties of ligands required for optimal OB1 B cell activation. Monovalent engagement of the BCR with an epitope-bearing 17-mer synthetic peptide readily activated OB1 B cells. Dimers of the minimal peptide epitope oriented in an N to N configuration were more stimulatory than their C to C counterparts. Although shorter length correlated with less activation, a monomeric 8-mer peptide epitope behaved as a weak agonist that blocked responses to cell-bound peptide antigen, a blockade which could not be reversed by CD40 ligation. The 8-mer not only delivered a suboptimal signal, which blocked subsequent responses to OVA, anti-IgG, and anti-kappa, but also competed for binding with OVA. Our results show that fine-tuning of BCR-ligand recognition can lead to B cell nonresponsiveness, activation, or inhibition.
Collapse
Affiliation(s)
- Ana M Avalos
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nair N, Buti L, Faenzi E, Buricchi F, Nuti S, Sammicheli C, Tavarini S, Popp MW, Ploegh H, Berti F, Pizza M, Castellino F, Finco O, Rappuoli R, Del Giudice G, Galli G, Bardelli M. Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo. IMMUNITY INFLAMMATION AND DISEASE 2013; 1:3-13. [PMID: 25400913 PMCID: PMC4217542 DOI: 10.1002/iid3.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023]
Abstract
Antigen-specific memory B cells generate anamnestic responses and high affinity antibodies upon re-exposure to pathogens. Attempts to isolate rare antigen-specific memory B cells for in-depth functional analysis at the single-cell level have been hindered by the lack of tools with adequate sensitivity. We applied two independent methods of protein labeling to sensitive and specific ex vivo identification of antigen-specific memory B cells by flow cytometry: stringently controlled amine labeling, and sortagging, a novel method whereby a single nucleophilic fluorochrome molecule is added onto an LPETG motif carried by the target protein. We show that sortagged NadA, a major antigen in the meningococcal serogroup B vaccine, identifies NadA-specific memory B cells with high sensitivity and specificity, comparable to NadA amine-labeled under stringent reaction parameters in a mouse model of vaccination. We distinguish NadA-specific switched MBC induced by vaccination from the background signal contributed by splenic transitional and marginal zone B cells. In conclusion, we demonstrate that protein structural data coupled with sortag technology allows the development of engineered antigens that are as sensitive and specific as conventional chemically labeled antigens in detecting rare MBC, and minimize the possibility of disrupting conformational B cell epitopes.
Collapse
Affiliation(s)
- Nitya Nair
- Novartis Vaccines & Diagnostics Siena, Italy
| | - Ludovico Buti
- Novartis Vaccines & Diagnostics Siena, Italy ; Whitehead Institute for Biomedical Research Cambridge, Massachusetts
| | | | | | - Sandra Nuti
- Novartis Vaccines & Diagnostics Siena, Italy
| | | | | | - Maximilian Wl Popp
- Whitehead Institute for Biomedical Research Cambridge, Massachusetts ; University of Rochester, School of Medicine & Dentistry Rochester, New York ; Department of Biology, Massachusetts Institute of Technology Cambridge, Massachusetts
| | - Hidde Ploegh
- Whitehead Institute for Biomedical Research Cambridge, Massachusetts ; Department of Biology, Massachusetts Institute of Technology Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus. Nature 2013; 503:406-9. [PMID: 24141948 PMCID: PMC3863936 DOI: 10.1038/nature12637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.
Collapse
|
20
|
Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97:9343-53. [DOI: 10.1007/s00253-013-5232-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
|
21
|
Kulkarni C, Kinzer-Ursem TL, Tirrell DA. Selective functionalization of the protein N terminus with N-myristoyl transferase for bioconjugation in cell lysate. Chembiochem 2013; 14:1958-62. [PMID: 24030852 DOI: 10.1002/cbic.201300453] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 12/16/2022]
Abstract
A site to behold: Robust site-specific functionalization of engineered proteins is achieved with N-myristoyl transferase (NMT) in bacterial cells. NMT tolerates non-natural substrate proteins as well as reactive fatty acid tags, rendering it a powerful tool for protein conjugation applications, including the construction of protein microarrays from lysate.
Collapse
Affiliation(s)
- Chethana Kulkarni
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA) http://tirrell-lab.caltech.edu
| | | | | |
Collapse
|
22
|
Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 2013; 8:1787-99. [PMID: 23989673 DOI: 10.1038/nprot.2013.101] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methods for site-specific modification of proteins should be quantitative and versatile with respect to the nature and size of the biological or chemical targets involved. They should require minimal modification of the target, and the underlying reactions should be completed in a reasonable amount of time under physiological conditions. Sortase-mediated transpeptidation reactions meet these criteria and are compatible with other labeling methods. Here we describe the expression and purification conditions for two sortase A enzymes that have different recognition sequences. We also provide a protocol that allows the functionalization of any given protein at its C terminus, or, for select proteins, at an internal site. The target protein is engineered with a sortase-recognition motif (LPXTG) at the place where modification is desired. Upon recognition, sortase cleaves the protein between the threonine and glycine residues, facilitating the attachment of an exogenously added oligoglycine peptide modified with the functional group of choice (e.g., fluorophore, biotin, protein or lipid). Expression and purification of sortase takes ∼3 d, and sortase-mediated reactions take only a few minutes, but reaction times can be extended to increase yields.
Collapse
|
23
|
Huang LL, Lu GH, Hao J, Wang H, Yin DL, Xie HY. Enveloped virus labeling via both intrinsic biosynthesis and metabolic incorporation of phospholipids in host cells. Anal Chem 2013; 85:5263-70. [PMID: 23600895 DOI: 10.1021/ac4008144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An alternative method for labeling fully replicative enveloped viruses was developed, in which both the biosynthesis and metabolic incorporation of phospholipids in host cells were simultaneously utilized to introduce an azide group to the envelope of the vaccinia virus by taking advantage of the host-derived lipid membrane formation mechanism. Such an azide group could be subsequently used to fluorescently label the envelope of the virus via a bioorthogonal reaction. Furthermore, simultaneous dual-labeling of the virus through the virus replication was realized skillfully by coupling this envelope labeling strategy with "replication-intercalation labeling" of viral nucleic acid. For the first time, it is by natural propagation of the virus in its host cells in the presence of fluorophores that simultaneous dual-labeling of living viruses can be mildly realized with high efficiency in facile and mild conditions.
Collapse
Affiliation(s)
- Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
In this article, we will cover the folding of proteins in the lumen of the endoplasmic reticulum (ER), including the role of three types of covalent modifications: signal peptide removal, N-linked glycosylation, and disulfide bond formation, as well as the function and importance of resident ER folding factors. These folding factors consist of classical chaperones and their cochaperones, the carbohydrate-binding chaperones, and the folding catalysts of the PDI and proline cis-trans isomerase families. We will conclude with the perspective of the folding protein: a comparison of characteristics and folding and exit rates for proteins that travel through the ER as clients of the ER machinery.
Collapse
Affiliation(s)
- Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
25
|
Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins. Proc Natl Acad Sci U S A 2013; 110:6406-11. [PMID: 23576732 DOI: 10.1073/pnas.1219909110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells genetically deficient in sphingomyelin synthase-1 (SGMS1) or blocked in their synthesis pharmacologically through exposure to a serine palmitoyltransferase inhibitor (myriocin) show strongly reduced surface display of influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA). The transport of HA to the cell surface was assessed by accessibility of HA on intact cells to exogenously added trypsin and to HA-specific antibodies. Rates of de novo synthesis of viral proteins in wild-type and SGMS1-deficient cells were equivalent, and HA negotiated the intracellular trafficking pathway through the Golgi normally. We engineered a strain of influenza virus to allow site-specific labeling of HA and NA using sortase. Accessibility of both HA and NA to sortase was blocked in SGMS1-deficient cells and in cells exposed to myriocin, with a corresponding inhibition of the release of virus particles from infected cells. Generation of influenza virus particles thus critically relies on a functional sphingomyelin biosynthetic pathway, required to drive influenza viral glycoproteins into lipid domains of a composition compatible with virus budding and release.
Collapse
|
26
|
Sun E, He J, Zhuang X. Live cell imaging of viral entry. Curr Opin Virol 2013; 3:34-43. [PMID: 23395264 PMCID: PMC3587724 DOI: 10.1016/j.coviro.2013.01.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 01/21/2013] [Indexed: 12/17/2022]
Abstract
Viral entry encompasses the initial steps of infection starting from virion host cell attachment to viral genome release. Given the dynamic interactions between the virus and the host, many questions related to viral entry can be directly addressed by live cell imaging. Recent advances in fluorescent labeling of viral and cellular components, fluorescence microscopy with high sensitivity and spatiotemporal resolution, and image analysis enabled studies of a broad spectrum across many viral entry steps, including virus-receptor interactions, internalization, intracellular transport, genomic release, nuclear transport, and cell-to-cell transmission. Collectively, these live cell imaging studies have not only enriched our understandings of the viral entry mechanisms, but also provided novel insights into basic cellular biology processes.
Collapse
Affiliation(s)
- Eileen Sun
- Program in Virology, Harvard Medical School, Boston, MA 02115, United States
| | | | | |
Collapse
|
27
|
Hendricks GL, Weirich KL, Viswanathan K, Li J, Shriver ZH, Ashour J, Ploegh HL, Kurt-Jones EA, Fygenson DK, Finberg RW, Comolli JC, Wang JP. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem 2013; 288:8061-8073. [PMID: 23362274 DOI: 10.1074/jbc.m112.437202] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Influenza is a severe disease in humans and animals with few effective therapies available. All strains of influenza virus are prone to developing drug resistance due to the high mutation rate in the viral genome. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of influenza. Influenza uses many individually weak ligand binding interactions for a high avidity multivalent attachment to sialic acid-bearing cells. Polymerized sialic acid analogs can form multivalent interactions with influenza but are not ideal therapeutics due to solubility and toxicity issues. We used liposomes as a novel means for delivery of the glycan sialylneolacto-N-tetraose c (LSTc). LSTc-bearing decoy liposomes form multivalent, polymer-like interactions with influenza virus. Decoy liposomes competitively bind influenza virus in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. Inhibition is specific for influenza virus, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind influenza virus or inhibit infectivity. LSTc decoy liposomes prevent the spread of influenza virus during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. LSTc decoy liposomes co-localize with fluorescently tagged influenza virus, whereas control liposomes do not. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high avidity interactions with influenza hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging influenza strains.
Collapse
Affiliation(s)
- Gabriel L Hendricks
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Kim L Weirich
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106
| | - Karthik Viswanathan
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jing Li
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Zachary H Shriver
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Joseph Ashour
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Evelyn A Kurt-Jones
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Deborah K Fygenson
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106; Department of Physics, University of California, Santa Barbara, California 93106
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - James C Comolli
- Charles Stark Draper Laboratory, Department of Bioengineering, Cambridge, Massachusetts 02139
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|