1
|
Porte R, Belloy M, Audibert A, Bassot E, Aïda A, Alis M, Miranda-Capet R, Jourdes A, van Gisbergen KPJM, Masson F, Blanchard N. Protective function and differentiation cues of brain-resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2024; 121:e2403054121. [PMID: 38838017 PMCID: PMC11181119 DOI: 10.1073/pnas.2403054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.
Collapse
Affiliation(s)
- Rémi Porte
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marcy Belloy
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marine Alis
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Romain Miranda-Capet
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Aurélie Jourdes
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | | | - Frédérick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| |
Collapse
|
2
|
Structural Analyses of a Dominant Cryptosporidium parvum Epitope Presented by H-2K b Offer New Options To Combat Cryptosporidiosis. mBio 2023; 14:e0266622. [PMID: 36602309 PMCID: PMC9973275 DOI: 10.1128/mbio.02666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cryptosporidium parvum has gained much attention as a major cause of diarrhea in the world, particularly in those with compromised immune systems. The data currently available on how the immune system recognizes C. parvum are growing rapidly, but we lack data on the interactions among host major histocompatibility complex (MHC) diversity and parasitic T-cell epitopes. To identify antigenic epitopes in a murine model, we performed systematic profiling of H-2Kb-restricted peptides by screening the dominant Cryptosporidium antigens. The results revealed that the glycoprotein-derived epitope Gp40/15-SVF9 induced an immunodominant response in C. parvum-recovered C57BL/6 mice, and injection of the cytotoxic-T-lymphocyte (CTL) peptide with the adjuvant activated peptide-specific CD8+ T cells. Notably, the SVF9 epitope was highly conserved across Cryptosporidium hominis, C. parvum, and many other Cryptosporidium species. SVF9 also formed stable peptide-MHC class I (MHC I) complexes with HLA-A*0201, suggesting cross-reactivity between H-2Kb and human MHC I specificities. Crystal structure analyses revealed that the interactions of peptide-MHC surface residues of H-2Kb and HLA-A*0201 are highly conserved. The hydrogen bonds of H-2Kb-SVF9 are similar to those of a dominant epitope presented by HLA-A*0201, which can be recognized by a public human T-cell receptor (TCR). Notably, we found double conformations in position 4 (P4), 5 (P5) of the SVF9 peptide, which showed high flexibility, and multiple peptide conformations generated more molecular surfaces that can potentially be recognized by TCRs. Our findings demonstrate that an immunodominant C. parvum epitope and its homologs from different Cryptosporidium species and subtypes can benefit vaccine development to combat cryptosporidiosis. IMPORTANCE Adaptive immune responses and T lymphocytes have been implicated as important mechanisms of parasite-induced protection. However, the role of CD8+ T lymphocytes in the resolution of C. parvum infection is largely unresolved. Our results revealed that the glycoprotein-derived epitope Gp40/15-SVF9 induced an immunodominant CD8+ T-cell response in C57BL/6 mice. Crystal structure analyses revealed that the interactions of the H-2Kb-SVF9 peptide are similar to those of a dominant epitope presented by HLA-A*0201, which can be recognized by human TCRs. In addition, we found double conformations of the SVF9 peptide, which showed high flexibility and multiple peptide conformations that can potentially be recognized by TCRs.
Collapse
|
3
|
Griffith MB, Pearce CS, Heaslip AT. Dense granule biogenesis, secretion, and function in Toxoplasma gondii. J Eukaryot Microbiol 2022; 69:e12904. [PMID: 35302693 PMCID: PMC9482668 DOI: 10.1111/jeu.12904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and the causative agent of Toxoplasmosis. A key to understanding and treating the disease lies with determining how the parasite can survive and replicate within cells of its host. Proteins released from specialized secretory vesicles, named the dense granules (DGs), have diverse functions that are critical for adapting the intracellular environment, and are thus key to survival and pathogenicity. In this review, we describe the current understanding and outstanding questions regarding dense granule biogenesis, trafficking, and regulation of secretion. In addition, we provide an overview of dense granule protein ("GRA") function upon secretion, with a focus on proteins that have recently been identified.
Collapse
Affiliation(s)
- Michael B Griffith
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Camille S Pearce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Aoife T Heaslip
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Bhattacharya M, Sharma AR, Mallick B, Lee SS, Seo EM, Chakraborty C. B.1.1.7 (Alpha) variant is the most antigenic compared to Wuhan strain, B.1.351, B.1.1.28/triple mutant and B.1.429 variants. Front Microbiol 2022; 13:895695. [PMID: 36033846 PMCID: PMC9411949 DOI: 10.3389/fmicb.2022.895695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid spread of the SARS-CoV-2 virus and its variants has created a catastrophic impact worldwide. Several variants have emerged, including B.1.351 (Beta), B.1.1.28/triple mutant (P.1), B.1.1.7 (Alpha), and B.1.429 (Epsilon). We performed comparative and comprehensive antigenicity mapping of the total S-glycoprotein using the Wuhan strain and the other variants and identified 9-mer, 15-mer, and 20-mer CTL epitopes through in silico analysis. The study found that 9-mer CTL epitope regions in the B.1.1.7 variant had the highest antigenicity and an average of the three epitope types. Cluster analysis of the 9-mer CTL epitopes depicted one significant cluster at the 70% level with two nodes (KGFNCYFPL and EGFNCYFPL). The phage-displayed peptides showed mimic 9-mer CTL epitopes with three clusters. CD spectra analysis showed the same band pattern of S-glycoprotein of Wuhan strain and all variants other than B.1.429. The developed 3D model of the superantigen (SAg)-like regions found an interaction pattern with the human TCR, indicating that the SAg-like component might interact with the TCR beta chain. The present study identified another partial SAg-like region (ANQFNSAIGKI) from the S-glycoprotein. Future research should examine the molecular mechanism of antigen processing for CD8+ T cells, especially all the variants’ antigens of S-glycoprotein.
Collapse
Affiliation(s)
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Bidyut Mallick
- Department of Applied Science, Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
| | - Eun-Min Seo
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-do, South Korea
- *Correspondence: Eun-Min Seo,
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
- Chiranjib Chakraborty,
| |
Collapse
|
5
|
Wang Y, Tsitsiklis A, Devoe S, Gao W, Chu HH, Zhang Y, Li W, Wong WK, Deane CM, Neau D, Slansky JE, Thomas PG, Robey EA, Dai S. Peptide Centric Vβ Specific Germline Contacts Shape a Specialist T Cell Response. Front Immunol 2022; 13:847092. [PMID: 35967379 PMCID: PMC9372435 DOI: 10.3389/fimmu.2022.847092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vβ2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vβ2-containing TCRs and correlates with an unusual Vα-Vβ interface, CDR loop conformations, and Vβ2-specific germline contacts with peptides. Vβ2 and Ld may represent "specialist" components for antigen recognition that allows for particularly strong and focused T cell responses.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Alexandra Tsitsiklis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Stephanie Devoe
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Wei Gao
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - H. Hamlet Chu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Yan Zhang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Wing Ki Wong
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | - David Neau
- Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Cornell University, Argonne, IL, United States
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ellen A. Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
6
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Bangs DJ, Tsitsiklis A, Steier Z, Chan SW, Kaminski J, Streets A, Yosef N, Robey EA. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep 2022; 38:110266. [PMID: 35045305 PMCID: PMC8896093 DOI: 10.1016/j.celrep.2021.110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals. Bangs et al. report that distinct subsets of CD8+ T cells found during chronic infection occupy distinct regions of the spleen. CXCR3 regulates differentiation of T cells but not their migration. Instead, CXCR3 promotes the interaction of T cells with ligand-producing DCs in bridging channels, resulting in effector differentiation.
Collapse
Affiliation(s)
- Derek J Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zoë Steier
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Abou-El-Naga IF, Gomaa MM, ElAchy SN. Effect of HIV aspartyl protease inhibitors on experimental infection with a cystogenic Me49 strain of Toxoplasma gondii. Pathog Glob Health 2021; 116:107-118. [PMID: 34420500 DOI: 10.1080/20477724.2021.1967628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease of major significant perspectives in public health and veterinary medicine. So far, the available drugs control only the active infection, once the parasite encysts in the tissues, they lose their efficacy. Cytokines; IFN-γ and IL-10, play a critical role in the modulation of toxoplasmic encephalitis and neuro-inflammation in chronic toxoplasmosis. Antiretroviral protease inhibitors applied in the treatment of acquired immunodeficiency syndrome, revealed activity against multiple parasites. Aluvia (lopinavir/ritonavir) (L/R); an aspartyl protease inhibitor, had efficiently treated T. gondii RH strain infection. We investigated the potential activity of L/R against experimental T. gondii infection with a cystogenic Me49 strain in mice, considering the role of IFN-γ and IL-10 in the neuropathology versus pyrimethamine-sulfadiazine combination therapy. Three aluvia regimens were applied; starting on the day of infection (acute phase), 2-week PI (early chronic phase) and eight weeks PI (late chronic phase). L/R reduced the brain-tissue cyst burden significantly in all treatment regimens. It impaired the parasite infectivity markedly in the late chronic phase. Ultrastructural changes were detected in Toxoplasma cyst membrane and wall, bradyzoite membrane and nuclear envelope. The signs of bradyzoite paraptosis and cytoplasmic lipid droplets were observed. L/R had significantly reduced the brain-homogenate levels of IFN-γ and IL-10 in its three regimens however, they could not reach the normal level in chronic phases. Cerebral hypercellularity, perivascular inflammatory response, lymphoplasmacytic infiltrates and glial cellular reaction were ameliorated by L/R treatment. Herein, L/R was proved to possess promising preventive and therapeutic perspectives in chronic cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Iman Fathy Abou-El-Naga
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha Mohamed Gomaa
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil ElAchy
- Department Of Pathology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Müller K, Gibbins MP, Roberts M, Reyes‐Sandoval A, Hill AVS, Draper SJ, Matuschewski K, Silvie O, Hafalla JCR. Low immunogenicity of malaria pre-erythrocytic stages can be overcome by vaccination. EMBO Mol Med 2021; 13:e13390. [PMID: 33709544 PMCID: PMC8033512 DOI: 10.15252/emmm.202013390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation. We tested this assumption in an infection and vaccination model for malaria pre-erythrocytic stages. We engineered Plasmodium berghei parasites that harbour a well-characterised epitope for stimulation of CD8+ T cells, either as an antigen in the sporozoite surface-expressed circumsporozoite protein or the parasitophorous vacuole membrane associated protein upregulated in sporozoites 4 (UIS4) expressed in exo-erythrocytic forms (EEFs). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust, superior antigen-specific CD8+ T-cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes, as recognition and targeting by vaccine-induced effector CD8+ T cells results in high levels of protection when targeting either antigen. Our study is the first demonstration that poorly immunogenic EEF antigens do not preclude their susceptibility to antigen-specific CD8+ T-cell killing, which has wide-ranging implications on antigen prioritisation for next-generation pre-erythrocytic malaria vaccines.
Collapse
Affiliation(s)
- Katja Müller
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Matthew P Gibbins
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
- Present address:
Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Mark Roberts
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Arturo Reyes‐Sandoval
- Jenner InstituteUniversity of OxfordOxfordUK
- Present address:
Instituto Politécnico NacionalIPN. Av. Luis Enrique Erro s/n, Unidad Adolfo López MateosMexico CityMexico
| | | | | | - Kai Matuschewski
- Parasitology UnitMax Planck Institute for Infection BiologyBerlinGermany
- Department of Molecular ParasitologyInstitute of BiologyHumboldt UniversityBerlinGermany
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies InfectieusesCIMI‐ParisParisFrance
| | - Julius Clemence R Hafalla
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
10
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Kongsomboonvech AK, Rodriguez F, Diep AL, Justice BM, Castallanos BE, Camejo A, Mukhopadhyay D, Taylor GA, Yamamoto M, Saeij JPJ, Reese ML, Jensen KDC. Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5. PLoS Pathog 2020; 16:e1008327. [PMID: 32853276 PMCID: PMC7480859 DOI: 10.1371/journal.ppat.1008327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/09/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite’s protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including ‘avirulent’ ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen. Parasites are excellent “students” of our immune system as they can deflect, antagonize and confuse the immune response making it difficult to vaccinate against these pathogens. In this report, we analyzed how a widespread parasite of mammals, Toxoplasma gondii, manipulates an immune cell needed for immunity to many intracellular pathogens, the CD8 T cell. Host pathways that govern CD8 T cell production of the immune protective cytokine, IFNγ, were also explored. We hypothesized the secreted T. gondii virulence factor, ROP5, work to inhibit the MHC 1 antigen presentation pathway therefore making it difficult for CD8 T cells to see T. gondii antigens sequestered inside a parasitophorous vacuole. However, manipulation through T. gondii ROP5 does not fully explain how CD8 T cells commit to making IFNγ in response to infection. Importantly, CD8 T cell IFNγ responses to T. gondii require the pathogen sensor NLRP3 to be expressed in the infected cell. Other proteins associated with NLRP3 activation, including members of the conventional inflammasome activation cascade pathway, are only partially involved. Our results identify a novel pathway by which NLRP3 regulates T cell function and underscore the need for NLRP3-activating adjuvants in vaccines aimed at inducing CD8 T cell IFNγ responses to parasites.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Anh L. Diep
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brandon M. Justice
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Brayan E. Castallanos
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
| | - Ana Camejo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeroen P. J. Saeij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California, Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
13
|
Şahar EA, Can H, İz SG, Döşkaya AD, Kalantari-Dehaghi M, Deveci R, Gürüz AY, Döşkaya M. Development of a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V and determination of its protective efficacy against acute toxoplasmosis. BMC Infect Dis 2020; 20:493. [PMID: 32650739 PMCID: PMC7348124 DOI: 10.1186/s12879-020-05220-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals, avian species and humans. Toxoplasmosis is asymptomatic in healthy individuals, whereas it may lead to death in immune suppressed or deficient patients. A vaccine against T. gondii is required to prevent consequences of the infection. The aim of this study is to generate a multivalent recombinant protein vaccine against T. gondii. Methods 49 previously discovered antigenic proteins of T gondii were evaluated by their expression level in E. coli and by comprehensive bioinformatics analyses to determine antigenic epitopes. Based on these analyses, six vaccine candidate proteins were selected to generate a hexavalent recombinant protein vaccine adjuvanted with Montanide ISA 50 V. Humoral and cellular immune responses were determined by flow cytometry and ELISA. Vaccinated mice were challenged with T. gondii Ankara strain tachyzoites. Results In mice vaccinated with hexavalent vaccine, strong total IgG (P < 0.0001) and IgG2a (P < 0.001) responses were induced compared to controls, the ratio of CD4+ and CD8+ T lymphocytes secreting IFN-γ increased, and significantly higher extracellular IFN-γ secretion was achieved compared to the controls (P < 0.001). The survival time of the vaccinated mice increased to 8.38 ± 2.13 days which was significantly higher than controls (P < 0.01). Conclusions Altogether, these results show that the hexavalent vaccine which is developed for the first time against T. gondii induced strong and balanced Th1 and Th2 immune responses as well as conferred significant protection against challenge with lethal toxoplasmosis in murine model.
Collapse
Affiliation(s)
- Esra Atalay Şahar
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey.,Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey.,Department of Biotechnology, Ege University Faculty of Science, Bornova, 35100, İzmir, Turkey
| | - Hüseyin Can
- Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Ege University Faculty of Engineering, Bornova, 35100, İzmir, Turkey
| | - Aysu Değirmenci Döşkaya
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey
| | | | - Remziye Deveci
- Department of Molecular Biology, Faculty of Science, Ege University, İzmir, 35100, Bornova, Turkey
| | - Adnan Yüksel Gürüz
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey
| | - Mert Döşkaya
- Present address: Department of Parasitology, Vaccine Research and Development Laboratory, Faculty of Medicine, Ege University, Bornova, 35100, İzmir, Turkey.
| |
Collapse
|
14
|
Tsitsiklis A, Bangs DJ, Lutes LK, Chan SW, Geiger KM, Modzelewski AJ, Labarta-Bajo L, Wang Y, Zuniga EI, Dai S, Robey EA. An Unusual MHC Molecule Generates Protective CD8+ T Cell Responses to Chronic Infection. Front Immunol 2020; 11:1464. [PMID: 32733483 PMCID: PMC7360836 DOI: 10.3389/fimmu.2020.01464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
The CD8+ T cell response to the intracellular parasite Toxoplasma gondii varies dramatically between mouse strains, resulting in stark differences in control of the parasite. Protection in BALB/c mice can be attributed to an unusually strong and protective MHC-1 Ld-restricted CD8+ T cell response directed against a peptide derived from the parasite antigen GRA6. The MHC-1 Ld molecule has limited peptide binding compared to conventional MHC molecules such as Kb or Db, which correlates with polymorphisms associated with "elite control" of HIV in humans. To investigate the link between the unusual MHC-1 molecule Ld and the generation of "elite controller" CD8+ T cell responses, we compared the GRA6-Ld specific T cell response to the well-studied OVA-Kb specific response, and demonstrated that GRA6-Ld specific T cells are significantly more protective and resistant to exhaustion in chronic T. gondii infection. To further investigate the connection between limited peptide presentation and robust T cell responses, we used CRISPR/Cas9 to generate mice with a point mutation (W97R) in the peptide-binding groove of Ld that results in broader peptide binding. We investigated the effect of this Ld W97R mutation on another robust Ld-restricted response against the IE1 peptide during Murine Cytomegalovirus (MCMV) infection. This mutation leads to an increase in exhaustion markers in the IE1-Ld specific CD8+ T cell response. Our results indicate that limited peptide binding by MHC-1 Ld correlates with the development of robust and protective CD8+ T cell responses that may avoid exhaustion during chronic infection.
Collapse
Affiliation(s)
- Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Derek J. Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lydia K. Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Shiao W. Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Kristina M. Geiger
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Andrew J. Modzelewski
- Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yang Wang
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Javadi Mamaghani A, Fathollahi A, Spotin A, Ranjbar MM, Barati M, Aghamolaie S, Karimi M, Taghipour N, Ashrafi M, Tabaei SJS. Candidate antigenic epitopes for vaccination and diagnosis strategies of Toxoplasma gondii infection: A review. Microb Pathog 2019; 137:103788. [DOI: 10.1016/j.micpath.2019.103788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022]
|
16
|
Tsitsiklis A, Bangs DJ, Robey EA. CD8+ T Cell Responses to Toxoplasma gondii: Lessons from a Successful Parasite. Trends Parasitol 2019; 35:887-898. [DOI: 10.1016/j.pt.2019.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
|
17
|
Rommereim LM, Fox BA, Butler KL, Cantillana V, Taylor GA, Bzik DJ. Rhoptry and Dense Granule Secreted Effectors Regulate CD8 + T Cell Recognition of Toxoplasma gondii Infected Host Cells. Front Immunol 2019; 10:2104. [PMID: 31555296 PMCID: PMC6742963 DOI: 10.3389/fimmu.2019.02104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV) localized parasite antigens and their presentation to CD8+ T cells by the major histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite antigens by MHC-I was significantly increased in macrophages and/or dendritic cells infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3, GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors. However, GRA2 mediated suppression of antigen presentation was not correlated with PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly co-dependent on the expression of the GRA6 protein. These results show that MHC-I antigen presentation of PV localized parasite antigens was controlled by mechanisms that were dependent or independent of IRG effector mediated PV disruption. Our findings suggest that the GRA6 protein underpins an important mechanism that enhances CD8+ T cell recognition of parasite-infected cells with damaged or ruptured PV membranes. However, in intact PVs, parasite secreted effector proteins that associate with the PV membrane or the intravacuolar network membranes play important roles to actively suppress antigen presentation by MHC-I to reduce CD8+ T cell recognition and clearance of Toxoplasma gondii infected host cells.
Collapse
Affiliation(s)
- Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kiah L Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Viviana Cantillana
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Gregory A Taylor
- Division of Geriatrics, Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States.,Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, NC, United States
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
18
|
Poncet AF, Blanchard N, Marion S. Toxoplasma and Dendritic Cells: An Intimate Relationship That Deserves Further Scrutiny. Trends Parasitol 2019; 35:870-886. [PMID: 31492624 DOI: 10.1016/j.pt.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Toxoplasma gondii (Tg), an obligate intracellular parasite of the phylum Apicomplexa, infects a wide range of animals, including humans. A hallmark of Tg infection is the subversion of host responses, which is thought to favor parasite persistence and propagation to new hosts. Recently, a variety of parasite-secreted modulatory effectors have been uncovered in fibroblasts and macrophages, but the specific interplay between Tg and dendritic cells (DCs) is just beginning to emerge. In this review, we summarize the current knowledge on Tg-DC interactions, including innate recognition, cytokine production, and antigen presentation, and discuss open questions regarding how Tg-secreted effectors may shape DC functions to perturb innate and adaptive immunity.
Collapse
Affiliation(s)
- Anaïs F Poncet
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France. @inserm.fr
| | - Sabrina Marion
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France. @pasteur-lille.fr
| |
Collapse
|
19
|
French T, Düsedau HP, Steffen J, Biswas A, Ahmed N, Hartmann S, Schüler T, Schott BH, Dunay IR. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner. J Neuroinflammation 2019; 16:159. [PMID: 31352901 PMCID: PMC6661741 DOI: 10.1186/s12974-019-1539-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. Methods Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. Results Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1β) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. Conclusion Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
20
|
Tedla MG, Every AL, Scheerlinck JPY. Investigating immune responses to parasites using transgenesis. Parasit Vectors 2019; 12:303. [PMID: 31202271 PMCID: PMC6570953 DOI: 10.1186/s13071-019-3550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Parasites comprise diverse and complex organisms, which substantially impact human and animal health. Most parasites have complex life-cycles, and by virtue of co-evolution have developed multifaceted, often life-cycle stage-specific relationships with the immune system of their hosts. The complexity in the biology of many parasites often limits our knowledge of parasite-specific immune responses, to in vitro studies only. The relatively recent development of methods to stably manipulate the genetic make-up of many parasites has allowed a better understanding of host-parasite interactions, particularly in vivo. In this regard, the use of transgenic parasites can facilitate the study of immunomodulatory mechanisms under in vivo conditions. Therefore, in this review, we specifically highlighted the current developments in the use of transgenic parasites to unravel the host's immune response to different life-cycle stages of some key parasite species such as Leishmania, Schistosoma, Toxoplasma, Plasmodium and Trypanosome and to some degree, the use of transgenic nematode parasites is also briefly discussed.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Present Address: College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086 Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
21
|
Khan IA, Ouellette C, Chen K, Moretto M. Toxoplasma: Immunity and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:44-50. [PMID: 31179204 DOI: 10.1007/s40588-019-0114-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Toxoplasma gondii infection induces a strong immunity in the host. Although the response is manifested by innate response during early infection, adaptive immunity is critical for long-term protection. Amongst the adaptive immune response CD4 T cells play an important helper role for CD8 T cells which are the primary effector cells responsible for controlling the infection. Notwithstanding the induction of robust CD8 T immunity during acute infection, the parasite is not eradicated. One of the reasons for this is the functional exhaustion of CD8 T cells during latent infection. Recent studies from our laboratory have reported that primary cause of CD8 T cell exhaustion is compromised CD4 T cell help during latent toxoplasmosis. CD8 T cell dysfunctionality is preceded by CD4 exhaustion and effector immunity is severely compromised.
Collapse
Affiliation(s)
- Imtiaz A Khan
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037
| | - Charlotte Ouellette
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037
| | - Keer Chen
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037
| | - Magali Moretto
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC 20037
| |
Collapse
|
22
|
Döşkaya M, Liang L, Jain A, Can H, Gülçe İz S, Felgner PL, Değirmenci Döşkaya A, Davies DH, Gürüz AY. Discovery of new Toxoplasma gondii antigenic proteins using a high throughput protein microarray approach screening sera of murine model infected orally with oocysts and tissue cysts. Parasit Vectors 2018; 11:393. [PMID: 29973272 PMCID: PMC6033234 DOI: 10.1186/s13071-018-2934-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations in immune compromised humans. The parasite has also been recently linked to behavioral diseases in humans and other mammalian hosts. New antigens are being evaluated to develop a diagnostic kit for the diagnosis of acute infection or a protective vaccine. METHODS In this study, we have focused on the discovery of new antigenic proteins from T. gondii genomic data using a high throughput protein microarray screening. To date, microarrays containing > 2870 candidate exon products of T. gondii have been probed with sera collected from patients with toxoplasmosis. Here, the protein microarrays are probed with well-characterized serum samples from animal models administered orally with oocysts or tissue cysts. The aim was to discover the antigens that overlap in the mouse profile with human antibody profiles published previously. For this, a reactive antigen list of 240 antigens recognized by murine IgG and IgM was identified using pooled sera from orally infected mice. RESULTS Analyses of screening data have identified plenty of antigens and showed strong immunogenicity in both mouse and human antibody profiles. Among them, ROP1, GRA2, GRA3, GRA4, GRA5, GRA6, GRA7, GRA8, GRA14, MIC1, MIC2 and MAG1 have shown strong immunogenicity and used as antigen in development of vaccines or serological diagnostic assays in previous studies. CONCLUSION In addition to the above findings, ROP6, MIC12, SRS29A and SRS13 have shown strong immunogenicity but have not been tested in development of a diagnostic assay or a vaccine model yet.
Collapse
Affiliation(s)
- Mert Döşkaya
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| | - Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Hüseyin Can
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova/İzmir, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Ege University Faculty of Engineering, Bornova/İzmir, Turkey
| | - Philip Louis Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Aysu Değirmenci Döşkaya
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| | - David Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| |
Collapse
|
23
|
Draheim M, Wlodarczyk MF, Crozat K, Saliou JM, Alayi TD, Tomavo S, Hassan A, Salvioni A, Demarta-Gatsi C, Sidney J, Sette A, Dalod M, Berry A, Silvie O, Blanchard N. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol Med 2018; 9:1605-1621. [PMID: 28935714 PMCID: PMC5666312 DOI: 10.15252/emmm.201708123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T‐cell subsets are critical to hamper pathology. Yet the antigen‐presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood‐stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP‐specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite‐specific Th1 cells and inhibit the development of IL‐10+CD4 T cells. This work profiles the P. berghei blood‐stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria‐specific CD4 T‐cell responses.
Collapse
Affiliation(s)
- Marion Draheim
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Myriam F Wlodarczyk
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Karine Crozat
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Tchilabalo Dilezitoko Alayi
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Stanislas Tomavo
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ali Hassan
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Anna Salvioni
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Claudia Demarta-Gatsi
- CNRS, INSERM, Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Marc Dalod
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Antoine Berry
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC University of Paris 06, Paris, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
24
|
Understanding and Manipulating Viral Immunity: Antibody Immunodominance Enters Center Stage. Trends Immunol 2018; 39:549-561. [PMID: 29789196 DOI: 10.1016/j.it.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
Adaptive immune responses against antigenically variable viruses and cellular pathogens are efficient in many cases, but largely limited to the infecting or immunizing strain. A major factor that limits immunity is immunodominance (ID), the hierarchical focusing of adaptive immune responses on a subset of antigenic determinants. While CD8+ T cell ID has been extensively studied, studies of basic mechanisms of B cell ID are limited, despite the importance of antibodies (Abs) for durable protection against pathogens. Here, we review recent progress in understanding the basic rules and mechanisms of B cell ID, compare B and CD8+ T cell ID, and outline challenges to overcoming ID to develop Ab-based 'universal' vaccines for influenza A and other highly variable viruses.
Collapse
|
25
|
Santi-Rocca J, Blanchard N. Membrane trafficking and remodeling at the host-parasite interface. Curr Opin Microbiol 2017; 40:145-151. [PMID: 29175340 DOI: 10.1016/j.mib.2017.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/14/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022]
Abstract
Membrane shape is functionally linked with many cellular processes. The limiting membrane of vacuoles containing Toxoplasma gondii and Plasmodium apicomplexan parasites lies at the host-parasite interface. This membrane comprises intra-vacuolar and extra-vacuolar tubulo-vesicular deformations, which influence host-parasite cross-talk. Here, underscoring specificities and similarities between the T. gondii and Plasmodium contexts, we present recent findings about vacuolar membrane remodeling and its potential roles in parasite fitness and immune recognition. We review in particular the implication of tubulo-vesicular structures in trapping and/or transporting host and parasite components. Understanding how membrane remodeling influences host-pathogen interactions is expected to be critical in the battle against many intracellular pathogens beyond parasites.
Collapse
Affiliation(s)
- Julien Santi-Rocca
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Blanchard
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
26
|
Resistance to Chronic Toxoplasma gondii Infection Induced by a DNA Vaccine Expressing GRA16. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1295038. [PMID: 28875149 PMCID: PMC5569751 DOI: 10.1155/2017/1295038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/09/2017] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii can infect all warm-blooded animals including human beings. T. gondii dense granule protein 16 (TgGRA16) as a crucial virulence factor could modulate the host gene expression. Here, a DNA vaccine expressing TgGRA16 was constructed to explore the protective efficacy against T. gondii infection in Kunming mice. The immune responses induced by pVAX-GRA16 were also evaluated. Mice immunized with pVAX-GRA16 could elicit higher levels of specific IgG antibody and strong cellular response compared to those in controls. The DNA vaccination significantly increased the levels of cytokines (IFN-γ, IL-2, IL-4, and IL-10) and the percentages of CD4+ and CD8+ T cells in mice. After lethal challenge, mice immunized with pVAX-GRA16 (8.4 ± 0.78 days) did not show a significant longer survival time than that in controls (7.1 ± 0.30 days) (p > 0.05). However, in chronic toxoplasmosis model (administration of 10 brain cysts of PRU strain orally), numbers of tissue cysts in mice immunized with pVAX-GRA16 were significantly reduced compared to those in controls (p < 0.05) and the rate of reduction could reach 43.89%. The results indicated that the TgGRA16 would be a promising vaccine candidate for further development of effective epitope-based vaccines against chronic T. gondii infection in mice.
Collapse
|
27
|
Buaillon C, Guerrero NA, Cebrian I, Blanié S, Lopez J, Bassot E, Vasseur V, Santi-Rocca J, Blanchard N. MHC I presentation of Toxoplasma gondii immunodominant antigen does not require Sec22b and is regulated by antigen orientation at the vacuole membrane. Eur J Immunol 2017; 47:1160-1170. [PMID: 28508576 DOI: 10.1002/eji.201646859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
The intracellular Toxoplasma gondii parasite replicates within a parasitophorous vacuole (PV). T. gondii secretes proteins that remain soluble in the PV space, are inserted into PV membranes or are exported beyond the PV boundary. In addition to supporting T. gondii growth, these proteins can be processed and presented by MHC I for CD8+ T-cell recognition. Yet it is unclear whether membrane binding influences the processing pathways employed and if topology of membrane antigens impacts their MHC I presentation. Here we report that the MHC I pathways of soluble and membrane-bound antigens differ in their requirement for host ER recruitment. In contrast to the soluble SAG1-OVA model antigen, we find that presentation of the membrane-bound GRA6 is independent from the SNARE Sec22b, a key molecule for transfer of host endoplasmic reticulum components onto the PV. Using parasites modified to secrete a transmembrane antigen with opposite orientations, we further show that MHC I presentation is highly favored when the C-terminal epitope is exposed to the host cell cytosol, which corresponds to GRA6 natural orientation. Our data suggest that the biochemical properties of antigens released by intracellular pathogens critically guide their processing pathway and are valuable parameters to consider for vaccination strategies.
Collapse
Affiliation(s)
- Célia Buaillon
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nestor A Guerrero
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/UNCuyo, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Sophie Blanié
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Jodie Lopez
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Emilie Bassot
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Virginie Vasseur
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Julien Santi-Rocca
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
28
|
El Bissati K, Chentoufi AA, Krishack PA, Zhou Y, Woods S, Dubey JP, Vang L, Lykins J, Broderick KE, Mui E, Suzuki Y, Sa Q, Bi S, Cardona N, Verma SK, Fraczek L, Reardon CA, Sidney J, Alexander J, Sette A, Vedvick T, Fox C, Guderian JA, Reed S, Roberts CW, McLeod R. Adjuvanted multi-epitope vaccines protect HLA-A*11:01 transgenic mice against Toxoplasma gondii. JCI Insight 2016; 1:e85955. [PMID: 27699241 DOI: 10.1172/jci.insight.85955] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell-eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Aziz A Chentoufi
- Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Ying Zhou
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Lo Vang
- PaxVax Inc., San Diego, California, USA
| | - Joseph Lykins
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Kate E Broderick
- Department of Research and Development, Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | - Ernest Mui
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Stephanie Bi
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Nestor Cardona
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | - Shiv K Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, USA
| | - Laura Fraczek
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| | | | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Tom Vedvick
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Chris Fox
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | - Steven Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rima McLeod
- Department of Opthalmology and Visual Science; and Department of Pediatrics, Infectious Diseases Division (RM), The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Wang Y, Wang G, Cai JP. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:431-7. [PMID: 27658594 PMCID: PMC5040083 DOI: 10.3347/kjp.2016.54.4.431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/21/2015] [Accepted: 11/26/2015] [Indexed: 01/18/2023]
Abstract
The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guangxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jian Ping Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
30
|
Sanecka A, Yoshida N, Dougan SK, Jackson J, Shastri N, Ploegh H, Blanchard N, Frickel EM. Transnuclear CD8 T cells specific for the immunodominant epitope Gra6 lower acute-phase Toxoplasma gondii burden. Immunology 2016; 149:270-279. [PMID: 27377596 PMCID: PMC5046057 DOI: 10.1111/imm.12643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022] Open
Abstract
We generated a CD8 T‐cell receptor (TCR) transnuclear (TN) mouse specific to the Ld‐restricted immunodominant epitope of GRA6 from Toxoplasma gondii as a source of cells to facilitate further investigation into the CD8 T‐cell‐mediated response against this pathogen. The TN T cells bound Ld‐Gra6 tetramer and proliferated upon unspecific and peptide‐specific stimulation. The TCR beta sequence of the Gra6‐specific TN CD8 T cells is identical in its V‐ and J‐region to the TCR‐β harboured by a hybridoma line generated in response to Gra6 peptide. Adoptively transferred Gra6 TN CD8 T cells proliferated upon Toxoplasma infection in vivo and exhibited an activated phenotype similar to host CD8 T cells specific to Gra6. The brain of Toxoplasma‐infected mice carried Gra6 TN cells already at day 8 post‐infection. Both Gra6 TN mice as well as adoptively transferred Gra6 TN cells were able to significantly reduce the parasite burden in the acute phase of Toxoplasma infection. Overall, the Gra6 TN mouse represents a functional tool to study the protective and immunodominant specific CD8 T‐cell response to Toxoplasma in both the acute and the chronic phases of infection.
Collapse
Affiliation(s)
- Anna Sanecka
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Nagisa Yoshida
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Stephanie K Dougan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Jackson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hidde Ploegh
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Blanchard
- INSERM UMR1043, CNRS UMR5282, Université de Toulouse-UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, UK.
| |
Collapse
|
31
|
Chu HH, Chan SW, Gosling JP, Blanchard N, Tsitsiklis A, Lythe G, Shastri N, Molina-París C, Robey EA. Continuous Effector CD8(+) T Cell Production in a Controlled Persistent Infection Is Sustained by a Proliferative Intermediate Population. Immunity 2016; 45:159-71. [PMID: 27421704 DOI: 10.1016/j.immuni.2016.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 01/22/2023]
Abstract
Highly functional CD8(+) effector T (Teff) cells can persist in large numbers during controlled persistent infections, as exemplified by rare HIV-infected individuals who control the virus. Here we examined the cellular mechanisms that maintain ongoing T effector responses using a mouse model for persistent Toxoplasma gondii infection. In mice expressing the protective MHC-I molecule, H-2L(d), a dominant T effector response against a single parasite antigen was maintained without a contraction phase, correlating with ongoing presentation of the dominant antigen. Large numbers of short-lived Teff cells were continuously produced via a proliferative, antigen-dependent intermediate (Tint) population with a memory-effector hybrid phenotype. During an acute, resolved infection, decreasing antigen load correlated with a sharp drop in the Tint cell population and subsequent loss of the ongoing effector response. Vaccination approaches aimed at the development of Tint populations might prove effective against pathogens that lead to chronic infection.
Collapse
Affiliation(s)
- H Hamlet Chu
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Shiao-Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - John Paul Gosling
- Departments of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Nicolas Blanchard
- Center of Pathophysiology of Toulouse-Purpan, INSERM UMR1043-CNRS UMR5282, University of Toulouse, 31024 Toulouse Cedex 3, France
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Grant Lythe
- Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carmen Molina-París
- Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Lasso P, Cárdenas C, Guzmán F, Rosas F, Thomas MC, López MC, González JM, Cuéllar A, Campanera JM, Luque FJ, Puerta CJ. Effect of secondary anchor amino acid substitutions on the immunogenic properties of an HLA-A*0201-restricted T cell epitope derived from the Trypanosoma cruzi KMP-11 protein. Peptides 2016; 78:68-76. [PMID: 26854383 DOI: 10.1016/j.peptides.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
The TcTLE peptide (TLEEFSAKL) is a CD8(+) T cell HLA-A*0201-restricted epitope derived from the Trypanosoma cruzi KMP-11 protein that is efficiently processed, presented and recognized by CD8(+) T cells from chagasic patients. Since the immunogenic properties of wild-type epitopes may be enhanced by suitable substitutions in secondary anchor residues, we have studied the effect of introducing specific mutations at position 3, 6 and 7 of the TcTLE peptide. Mutations (E3L, S6V and A7F) were chosen on the basis of in silico predictions and in vitro assays were performed to determine the TcTLE-modified peptide binding capacity to the HLA-A*0201 molecule. In addition, the functional activity of peptide-specific CD8(+) T cells in HLA-A2(+) chagasic patients was also interrogated. In contrast to bioinformatics predictions, the TcTLE-modified peptide was found to have lower binding affinity and stability than the original peptide. Nevertheless, CD8(+) T cells from chronic chagasic patients recognized the TcTLE-modified peptide producing TNF-α and INF-γ and expressing CD107a/b, though in less extension than the response triggered by the original peptide. Overall, although the amino acids at positions 3, 6 and 7 of TcTLE are critical for the peptide affinity, they have a limited effect on the immunogenic properties of the TcTLE epitope.
Collapse
Affiliation(s)
- Paola Lasso
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia; Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia; Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - Constanza Cárdenas
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile
| | - Fernando Rosas
- Instituto de Arritmias Joseph Brugada, Fundación Clínica Abood Shaio, Diagonal 115A No. 70C-75, Bogotá D.C., Colombia
| | - María Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n.18016, Granada, Spain
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Carrera 1 No. 18A-10, Bogotá D.C., Colombia
| | - Adriana Cuéllar
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia
| | - Josep Maria Campanera
- Departament de Fisicoquímica, Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Concepción Judith Puerta
- Laboratorio de Parasitología Molecular, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C., Colombia.
| |
Collapse
|
33
|
McConkey CA, Delorme-Axford E, Nickerson CA, Kim KS, Sadovsky Y, Boyle JP, Coyne CB. A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance. SCIENCE ADVANCES 2016; 2:e1501462. [PMID: 26973875 PMCID: PMC4783126 DOI: 10.1126/sciadv.1501462] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/04/2016] [Indexed: 05/30/2023]
Abstract
In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)-based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance.
Collapse
Affiliation(s)
- Cameron A. McConkey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elizabeth Delorme-Axford
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Cheryl A. Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287, USA
| | - Kwang Sik Kim
- Division of Infectious Diseases, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yoel Sadovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jon P. Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carolyn B. Coyne
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
McMurtrey C, Trolle T, Sansom T, Remesh SG, Kaever T, Bardet W, Jackson K, McLeod R, Sette A, Nielsen M, Zajonc DM, Blader IJ, Peters B, Hildebrand W. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. eLife 2016; 5. [PMID: 26824387 PMCID: PMC4775218 DOI: 10.7554/elife.12556] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/28/2016] [Indexed: 01/10/2023] Open
Abstract
HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI:http://dx.doi.org/10.7554/eLife.12556.001 Toxoplasma gondii is a parasite that can infect most warm-blooded animals and cause a disease called toxoplasmosis. In humans, toxoplasmosis generally does not cause any noticeable symptoms, but it can cause serious problems in pregnant women and individuals with weakened immune systems. T. gondii is one of many parasites that hide within human cells in an attempt to avoid detection by the immune system. However, proteins called Human Leukocyte Antigens, or HLAs, can reveal hidden parasites by carrying small sections of them from the inside the infected cell to the cell’s surface. The immune system can then recognize the fragments as foreign and attack the parasite. HLAs typically pick up parasite fragments of a certain length, which enables the immune system to recognize that what is being displayed is a piece of parasite. By purifying HLAs from cells that have been infected by T. gondii, McMurtrey et al. have now learned more about which fragments of the parasite are displayed to the immune system. This analysis revealed that the parasite somehow manipulates the HLAs to carry parasite fragments that are considerably longer than can be explained with our current knowledge of how HLAs work. By using a technique called X-ray crystallography, McMurtrey et al. also show that the structure of the HLA assumes a previously unseen configuration when interacting with fragments of T. gondii. In the future, it will be important to understand how infected cells give rise to unusual structural configurations of HLAs and to unravel how these structures affect the immune system’s ability to fight infections. DOI:http://dx.doi.org/10.7554/eLife.12556.002
Collapse
Affiliation(s)
- Curtis McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Pure MHC LLC, Austin, United States
| | - Thomas Trolle
- Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark.,La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Tiffany Sansom
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, United States
| | - Soumya G Remesh
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Thomas Kaever
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Kenneth Jackson
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Rima McLeod
- University of Chicago, Chicago, United States
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Technical University of Denmark, Kongens Lyngby, Denmark.,Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Dirk M Zajonc
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, United States
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, United States
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, United States.,Pure MHC LLC, Austin, United States
| |
Collapse
|
35
|
Jensen KDC. Antigen Presentation of Vacuolated Apicomplexans--Two Gateways to a Vaccine Antigen. Trends Parasitol 2015; 32:88-90. [PMID: 26733404 DOI: 10.1016/j.pt.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
For parasites that sequester themselves within a vacuole, new rules governing antigen presentation are coming into focus. Components of the host's autophagy machinery and the parasite's membranous nanotubular network within the parasitophorous vacuole play a major role in determining antigenicity of Toxoplasma proteins. As such, both parasite and vaccinologist may exploit these pathways to regulate the ever important CD8 T cell response to apicomplexan parasites.
Collapse
Affiliation(s)
- Kirk D C Jensen
- School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
36
|
Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, Buaillon C, Allart S, Fox BA, Rommereim LM, Bzik DJ, Schoehn G, Weissenhorn W, Dubremetz JF, Gagnon J, Mercier C, Cesbron-Delauw MF, Blanchard N. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen. Cell Rep 2015; 13:2273-86. [PMID: 26628378 DOI: 10.1016/j.celrep.2015.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022] Open
Abstract
Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.
Collapse
Affiliation(s)
- Jodie Lopez
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Amina Bittame
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Céline Massera
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Virginie Vasseur
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Grégory Effantin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | - Anne Valat
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Célia Buaillon
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Sophie Allart
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, Grenoble 38044, France; CNRS, IBS, Grenoble 38044, France; CEA, IBS, Grenoble 38044, France; CNRS, Unit for Virus Host-Cell Interactions (UVHCI), Grenoble 38042, France
| | | | - Jean Gagnon
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Corinne Mercier
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Marie-France Cesbron-Delauw
- CNRS, UMR 5163, Grenoble 38000, France; Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), Université Grenoble Alpes, Grenoble 38000, France
| | - Nicolas Blanchard
- INSERM, U1043, Toulouse 31300, France; CNRS, UMR 5282, Toulouse 31300, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse 31300, France.
| |
Collapse
|
37
|
Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 2015; 115:459-68. [PMID: 26581372 DOI: 10.1007/s00436-015-4824-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite with a broad range of hosts, and it causes severe toxoplasmasis in both humans and animals. It is well known that the progression and severity of a disease depend on the immunological status of the host. Immunological studies on antigens indicate that antigens do not exert their functions through the entire protein molecule, but instead, specific epitopes are responsible for the immune response. Protein antigens not only contain epitope structures used by B, T, cytotoxic T lymphocyte (CTL), and NK cells to mediate immunological responses but can also contain structures that are unfavorable for protective immunity. Therefore, the study of antigenic epitopes from T. gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology but it also plays a significant role in the development of new diagnostic reagents and vaccines. In this review, we summarized the immune mechanisms induced by antigen epitopes and the latest advances in identifying T. gondii antigen epitopes. Particular attention was paid to the potential clinical usefulness of epitopes in this context. Through a critical analysis of the current state of knowledge, we elucidated the latest data concerning the biological effects of epitopes and the immune results aimed at the development of future epitope-based applications, such as vaccines and diagnostic reagents.
Collapse
|
38
|
Tscharke DC, Croft NP, Doherty PC, La Gruta NL. Sizing up the key determinants of the CD8+ T cell response. Nat Rev Immunol 2015; 15:705-16. [DOI: 10.1038/nri3905] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Hwang S, Khan IA. CD8+ T cell immunity in an encephalitis model of Toxoplasma gondii infection. Semin Immunopathol 2015; 37:271-9. [PMID: 25944514 DOI: 10.1007/s00281-015-0483-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii infection induces a robust CD8 T cell immunity in the infected host, which is critical for keeping chronic infection under control. IFNγ production and cytolytic activity exhibited by CD8 T cells are critical functions needed to prevent the reactivation of latent infection. Paradoxically, the susceptible mice infected with the parasite develop encephalitis irrespective of the presence of vigorous CD8 T cell immunity. Recent studies from our laboratory have demonstrated that these animals have defect in the memory CD8 T cell population, which become dysfunctional due to exhibition of inhibitory receptors like PD-1. Although the blockade of PD-1-PDL-1 pathway rescues the CD8 response, PD-1(hi) expressing cells are refractory to the treatment. In this review, we discuss the development of CD8 memory response during chronic infection, mechanism responsible for their dysfunctionality, and possible therapeutic measures that can be taken to reverse the process.
Collapse
Affiliation(s)
- SuJin Hwang
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | | |
Collapse
|
40
|
Coombes JL, Hunter CA. Immunity to Toxoplasma gondii--into the 21st century. Parasite Immunol 2015; 37:105-7. [PMID: 25682704 DOI: 10.1111/pim.12177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/01/2022]
Affiliation(s)
- J L Coombes
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
41
|
Blanchard N, Dunay IR, Schlüter D. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system. Parasite Immunol 2015; 37:150-8. [PMID: 25573476 DOI: 10.1111/pim.12173] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 02/04/2023]
Abstract
Upon infection of humans and animals with Toxoplasma gondii, the parasites persist as intraneuronal cysts that are controlled, but not eliminated by the immune system. In particular, intracerebral T cells are crucial in the control of T. gondii infection and are supported by essential functions from other leukocyte populations. Additionally, brain-resident cells including astrocytes, microglia and neurons contribute to the intracerebral immune response by the production of cytokines, chemokines and expression of immunoregulatory cell surface molecules, such as major histocompatibility (MHC) antigens. However, the in vivo behaviour of these individual cell populations, specifically their interaction during cerebral toxoplasmosis, remains to be elucidated. We discuss here what is known about the function of T cells, recruited myeloid cells and brain-resident cells, with particular emphasis on the potential cross-regulation of these cell populations, in governing cerebral toxoplasmosis.
Collapse
Affiliation(s)
- N Blanchard
- Inserm U1043, Toulouse, France; CNRS U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UPS, Toulouse, France
| | | | | |
Collapse
|
42
|
Dunston CR, Herbert R, Griffiths HR. Improving T cell-induced response to subunit vaccines: opportunities for a proteomic systems approach. ACTA ACUST UNITED AC 2015; 67:290-9. [PMID: 25708693 DOI: 10.1111/jphp.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. OBJECTIVES In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. KEY FINDINGS Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. SUMMARY In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Collapse
Affiliation(s)
- Christopher R Dunston
- Life & Health Sciences, Aston University, Birmingham, West Midlands, UK; Mologic, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP
| | | | | |
Collapse
|
43
|
Mercier C, Cesbron-Delauw MF. Toxoplasma secretory granules: one population or more? Trends Parasitol 2015; 31:60-71. [PMID: 25599584 DOI: 10.1016/j.pt.2014.12.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023]
Abstract
In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.
Collapse
Affiliation(s)
- Corinne Mercier
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| | - Marie-France Cesbron-Delauw
- Laboratoire Adaptation et Pathogénie des Microorganismes (LAPM), CNRS UMR 5163 - Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
44
|
Ma JS, Sasai M, Ohshima J, Lee Y, Bando H, Takeda K, Yamamoto M. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. ACTA ACUST UNITED AC 2014; 211:2013-32. [PMID: 25225460 PMCID: PMC4172224 DOI: 10.1084/jem.20131272] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ma et al. show that the Toxoplasma gondii polymorphic dense granule protein GRA6 triggers the activation of the host transcription factor NFAT4, thus affecting the host immune response and maximizing parasite virulence. Toxoplasma gondii infection results in co-option and subversion of host cellular signaling pathways. This process involves discharge of T. gondii effector molecules from parasite secretory organelles such as rhoptries and dense granules. We report that the T. gondii polymorphic dense granule protein GRA6 regulates activation of the host transcription factor nuclear factor of activated T cells 4 (NFAT4). GRA6 overexpression robustly and selectively activated NFAT4 via calcium modulating ligand (CAMLG). Infection with wild-type (WT) but not GRA6-deficient parasites induced NFAT4 activation. Moreover, GRA6-deficient parasites failed to exhibit full virulence in local infection, and the treatment of WT mice with an NFAT inhibitor mitigated virulence of WT parasites. Notably, NFAT4-deficient mice displayed prolonged survival, decreased recruitment of CD11b+ Ly6G+ cells to the site of infection, and impaired expression of chemokines such as Cxcl2 and Ccl2. In addition, infection with type I parasites culminated in significantly higher NFAT4 activation than type II parasites due to a polymorphism in the C terminus of GRA6. Collectively, our data suggest that GRA6-dependent NFAT4 activation is required for T. gondii manipulation of host immune responses to maximize the parasite virulence in a strain-dependent manner.
Collapse
Affiliation(s)
- Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Jun Ohshima
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Youngae Lee
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan Department of Immunoparasitology, Research Institute for Microbial Diseases, Laboratory of Immunoparasitology, Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Department of Microbiology and Immunology, Graduate School of Medicine, and Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Complex immune cell interplay in the gamma interferon response during Toxoplasma gondii infection. Infect Immun 2014; 82:3090-7. [PMID: 24866795 DOI: 10.1128/iai.01722-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite of clinical importance, especially in immunocompromised patients. Investigations into the immune response to the parasite found that T cells are the primary effector cells regulating gamma interferon (IFN-γ)-mediated host resistance. However, recent studies have revealed a critical role for the innate immune system in mediating host defense independently of the T cell responses to the parasite. This body of knowledge is put into perspective by the unifying theme that immunity to the protozoan parasite requires a strong IFN-γ host response. In the following review, we discuss the role of IFN-γ-producing cells and the signals that regulate IFN-γ production during T. gondii infection.
Collapse
|
46
|
Grover HS, Chu HH, Kelly FD, Yang SJ, Reese ML, Blanchard N, Gonzalez F, Chan SW, Boothroyd JC, Shastri N, Robey EA. Impact of regulated secretion on antiparasitic CD8 T cell responses. Cell Rep 2014; 7:1716-1728. [PMID: 24857659 DOI: 10.1016/j.celrep.2014.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022] Open
Abstract
CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma, but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen, ROP5, that elicits a CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense-granule antigen GRA6 is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense-granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion affects the efficacy of parasite-specific CD8 T cell responses.
Collapse
Affiliation(s)
- Harshita Satija Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - H Hamlet Chu
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Felice D Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Soo Jung Yang
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Michael L Reese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Nicolas Blanchard
- Center of Pathophysiology of Toulouse-Purpan, INSERM UMR1043-CNRS UMR5282, University of Toulouse, 31024 Toulouse Cedex 3, France
| | - Federico Gonzalez
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
47
|
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis. Med Microbiol Immunol 2014; 203:315-22. [DOI: 10.1007/s00430-014-0339-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/29/2014] [Indexed: 01/12/2023]
|
48
|
Abstract
Toxoplasma gondii is a cosmopolitan protozoan parasite that infects a wide range of mammal and bird species. Common infection leads to high economic (e.g., abortions in sheep) and human (e.g., congenital toxoplasmosis or neurotoxoplasmosis in humans) losses. With one exception (Toxovax for sheep), there are no vaccines to prevent human or animal toxoplasmosis. The paper presents the current state and challenges in the development of a vaccine against toxoplasmosis, designed for farm animals either bred for consumption or commonly kept on farms and involved in parasite transmission. So far, the trials have mostly revolved around conventional vaccines and, compared with the research using laboratory animals (mainly mice), they have not been very numerous. However, the results obtained are promising and could be a good starting point for developing an effective vaccine to prevent toxoplasmosis.
Collapse
|
49
|
El Bissati K, Zhou Y, Dasgupta D, Cobb D, Dubey JP, Burkhard P, Lanar DE, McLeod R. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine 2014; 32:3243-8. [PMID: 24736000 DOI: 10.1016/j.vaccine.2014.03.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 12/23/2022]
Abstract
We created and produced a novel self-assembling nanoparticle platform for delivery of peptide epitopes that induces CD8(+) and CD4(+)T cells that are protective against Toxoplasma gondii infection. These self-assembling polypeptide nanoparticles (SAPNs) are composed of linear peptide (LP) monomers which contain two coiled-coil oligomerization domains, the dense granule 7 (GRA720-28 LPQFATAAT) peptide and a universal CD4(+)T cell epitope (derived from PADRE). Purified LPs assemble into nanoparticles with icosahedral symmetry, similar to the capsids of small viruses. These particles were evaluated for their efficacy in eliciting IFN-γ by splenocytes of HLA-B*0702 transgenic mice and for their ability to protect against subsequent T. gondii challenge. This work demonstrates the feasibility of using this platform approach with a CD8(+) epitope that binds HLA-B7 and tests the biological activity of potentially protective peptides restricted by human major histocompatibility complex (HLA) class I molecules in HLA transgenic mice.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Surgery, The University of Chicago, Chicago, IL 60637, USA.
| | - Ying Zhou
- Department of Surgery, The University of Chicago, Chicago, IL 60637, USA
| | - Debleena Dasgupta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Drew Cobb
- George Washington University, 2300 I St. NW Ross Hall, Room 745, Washington, DC 20037, USA
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, MD 20705, USA
| | - Peter Burkhard
- Institute of Materials Science and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Rima McLeod
- Department of Surgery, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Lindenstrøm T, Aagaard C, Christensen D, Agger EM, Andersen P. High-frequency vaccine-induced CD8⁺ T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur J Immunol 2014; 44:1699-709. [PMID: 24677089 DOI: 10.1002/eji.201344358] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/26/2022]
Abstract
Relatively few MHC class I epitopes have been identified from Mycobacterium tuberculosis, but during the late stage of infection, CD8(+) T-cell responses to these epitopes are often primed at an extraordinary high frequency. Although clearly available for recognition during infection, their role in resistance to mycobacterial infections still remain unclear. As an alternative to DNA and viral vaccination platforms, we have exploited a novel CD8(+) T-cell-inducing adjuvant, cationic adjuvant formulation 05 (dimethyldioctadecylammonium/trehalose dibehenate/poly (inositic:cytidylic) acid), to prime high-frequency CD8 responses to the immunodominant H2-K(b) -restricted IMYNYPAM epitope contained in the vaccine Ag tuberculosis (TB)10.4/Rv0288/ESX-H (where ESX is mycobacterial type VII secretion system). We report that the amino acid C-terminal to this minimal epitope plays a decisive role in proteasomal cleavage and epitope priming. The primary structure of TB10.4 is suboptimal for proteasomal processing of the epitope and amino acid substitutions in the flanking region markedly increased epitope-specific CD8(+) T-cell responses. One of the optimized sequences was contained in the closely related TB10.3/Rv3019c/ESX-R Ag and when recombinantly expressed and administered in the cationic adjuvant formulation 05 adjuvant, this Ag promoted very high CD8(+) T-cell responses. This abundant T-cell response was functionally active but provided no protection against challenge, suggesting that CD8(+) T cells play a limited role in protection against M. tuberculosis in the mouse model.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | | | | | | | | |
Collapse
|