1
|
Dick A, Mikirtumov V, Fuchs J, Krupp F, Olal D, Bendl E, Sprink T, Diebolder C, Kudryashev M, Kochs G, Roske Y, Daumke O. Structural characterization of Thogoto Virus nucleoprotein provides insights into viral RNA encapsidation and RNP assembly. Structure 2024; 32:1068-1078.e5. [PMID: 38749445 DOI: 10.1016/j.str.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 08/11/2024]
Abstract
Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.
Collapse
Affiliation(s)
- Alexej Dick
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Vasilii Mikirtumov
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Ferdinand Krupp
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Olal
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Elias Bendl
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Thiemo Sprink
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Core facility for Cryo-Electron Microscopy, Charité, Berlin, Germany
| | | | - Mikhail Kudryashev
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany.
| | - Yvette Roske
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | - Oliver Daumke
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Quignon E, Ferhadian D, Hache A, Vivet-Boudou V, Isel C, Printz-Schweigert A, Donchet A, Crépin T, Marquet R. Structural Impact of the Interaction of the Influenza A Virus Nucleoprotein with Genomic RNA Segments. Viruses 2024; 16:421. [PMID: 38543786 PMCID: PMC10974462 DOI: 10.3390/v16030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.
Collapse
Affiliation(s)
- Erwan Quignon
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Damien Ferhadian
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Antoine Hache
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Catherine Isel
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Anne Printz-Schweigert
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Amélie Donchet
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Thibaut Crépin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| |
Collapse
|
3
|
Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022; 14:v14030521. [PMID: 35336928 PMCID: PMC8955406 DOI: 10.3390/v14030521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerging and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication processes and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural infection or immunization. In this review, the data with important implications for the understanding of the role of NP in the immune response to human NSVs are revisited. Major implications of the elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the neglected humoral response to NP are discussed. The intention of this review is to remind that NP is a very promising target for the development of future vaccines.
Collapse
|
4
|
Inferring protein function in an emerging virus: detection of the nucleoprotein in Tilapia Lake Virus. J Virol 2022; 96:e0175721. [PMID: 35107373 DOI: 10.1128/jvi.01757-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging viruses impose global threats to animal and human populations and may bear novel genes with limited homology to known sequences, necessitating the development of novel approaches to infer and test protein functions. This challenge is dramatically evident in tilapia lake virus (TiLV), an emerging orthomyxo-like virus that threatens the global tilapia aquaculture and food security of millions of people. The majority of TiLV proteins have no homology to known sequences, impeding functionality assessments. Using a novel bioinformatics approach, we predicted that TiLV's Protein 4 encodes the nucleoprotein - a factor essential for viral RNA replication. Multiple methodologies revealed the expected properties of orthomyxoviral nucleoproteins. A modified yeast three-hybrid assay detected Protein 4-RNA interactions, which were independent of the RNA sequence, and identified specific positively charged residues involved. Protein 4-RNA interactions were uncovered by R-DeeP and XRNAX methodologies. Immunoelectron microscopy found that multiple Protein 4 copies localized along enriched ribonucleoproteins. TiLV RNA from cells and virions co-immunoprecipitated with Protein 4. Immunofluorescence microscopy detected Protein 4 in the cytoplasm and nuclei, and nuclear Protein 4 increased upon CRM1 inhibition, suggesting CRM1-dependent nuclear export of TiLV RNA. Together, these data reveal TiLV's nucleoprotein and highlight the ability to infer protein functionality, including novel RNA-binding proteins, in emerging pathogens. These are important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens. Importance Tilapia is an important source of dietary protein, especially in developing countries. Massive losses of tilapia were identified worldwide, risking the food security of millions of people. Tilapia lake virus (TiLV) is an emerging pathogen responsible for these disease outbreaks. TiLV's genome encodes ten major proteins, nine of which show no homology to other known viral or cellular proteins, hindering functionality assessment of these proteins. Here we describe a novel bioinformatics approach to infer the functionality of TiLV proteins, which predicted Protein 4 as the nucleoprotein - a factor essential for viral RNA replication. We provided experimental support for this prediction by applying multiple molecular, biochemical, and imaging approaches. Overall, we illustrate a strategy for functional analyses in viral discovery. The strategy is important in light of the expected discovery of many unknown viruses and the zoonotic potential of such pathogens.
Collapse
|
5
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
6
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
7
|
Luo M, Terrell JR, Mcmanus SA. Nucleocapsid Structure of Negative Strand RNA Virus. Viruses 2020; 12:E835. [PMID: 32751700 PMCID: PMC7472042 DOI: 10.3390/v12080835] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Negative strand RNA viruses (NSVs) include many important human pathogens, such as influenza virus, Ebola virus, and rabies virus. One of the unique characteristics that NSVs share is the assembly of the nucleocapsid and its role in viral RNA synthesis. In NSVs, the single strand RNA genome is encapsidated in the linear nucleocapsid throughout the viral replication cycle. Subunits of the nucleocapsid protein are parallelly aligned along the RNA genome that is sandwiched between two domains composed of conserved helix motifs. The viral RNA-dependent-RNA polymerase (vRdRp) must recognize the protein-RNA complex of the nucleocapsid and unveil the protected genomic RNA in order to initiate viral RNA synthesis. In addition, vRdRp must continuously translocate along the protein-RNA complex during elongation in viral RNA synthesis. This unique mechanism of viral RNA synthesis suggests that the nucleocapsid may play a regulatory role during NSV replication.
Collapse
Affiliation(s)
- Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA; (J.R.T.); (S.A.M.)
| | | | | |
Collapse
|
8
|
Toro-Ascuy D, Santibañez A, Peña V, Beltran-Pavez C, Cottet L, Molina C, Montoya M, Sandoval N, Vásquez-Martínez Y, Mascayano C, Cortez-San Martín M. Development of an Isavirus minigenome system to study the function of the pocket RNA-binding domain of the viral nucleoprotein (NP) in salmon cells. JOURNAL OF FISH DISEASES 2020; 43:197-206. [PMID: 31845350 DOI: 10.1111/jfd.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The Isavirus is an orthomyxovirus with a genome composed of eight segments of negative single-strand RNA (-ssRNA). It has been proposed that the eight genomic segments of the Isavirus are organized as a ribonucleoprotein (RNP) complex called a minigenome, which contains all the viral RNA segments, a viral heterotrimeric polymerase and multiple copies of the viral nucleoprotein (NP). Here, we develop an Isavirus minigenome system and show the importance of the formation of active RNPs and the role of viral NP R189, R194, R302 and K325 residues in the NP RNA-binding domain in the context of RNPs. The results indicate it is possible to generate a minigenome in salmon cells, a composite ISAV RNPs with EGFP-based chimeric vRNA with heterotrimeric polymerase (PB1, PB2, PA) and NP protein using CMV-based auxiliary plasmids. It was also shown that NP R189, R194, R302 and K325 residues are important to generate viral mRNA from the constituted RNPs and a detectable reporter protein. This work is the first salmon cell-based minigenome assay for the Isavirus, which was evaluated by a bioinformatic and functional study of the NP protein in viral RNPs, which showed that correct NP-vRNA interaction is key to the functioning of RNPs.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro Santibañez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Victor Peña
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Carolina Beltran-Pavez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Luis Cottet
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, University Santo Tomas, Santiago, Chile
| | - Cristian Molina
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Margarita Montoya
- Cellular Biochemistry Laboratory, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Nicolas Sandoval
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas Aplicadas, Facultad de Ciencias Médicas, Universidad de Santiago, Santiago, Chile
| | - Carolina Mascayano
- Department of Environmental Sciences, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
9
|
Rimstad E, Markussen T. Infectious salmon anaemia virus-molecular biology and pathogenesis of the infection. J Appl Microbiol 2020; 129:85-97. [PMID: 31885186 DOI: 10.1111/jam.14567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Aquaculture has a long history in many parts of the world, but it is still young at an industrial scale. Marine fish farming in open nets of a single fish species at high densities compared to their wild compatriots opens a plethora of possible infections. Infectious salmon anaemia (ISA) is an example of disease that surfaced after large-scale farming of Atlantic salmon (Salmo salar) appeared. Here, a review of the molecular biology of the ISA virus (ISAV) with emphasis on its pathogenicity is presented. The avirulent HPR0 variant of ISAV has resisted propagation in cell cultures, which has restricted the ability to perform in vivo experiments with this variant. The transition from avirulent HPR0 to virulent HPRΔ has not been methodically studied under controlled experimental conditions, and the triggers of the transition from avirulent to virulent forms have not been mapped. Genetic segment reassortment, recombination and mutations are important mechanisms in ISAV evolution, and for the development of virulence. In the 25 years since the ISAV was identified, large amounts of sequence data have been collected for epidemiologic and transmission studies, however, the lack of good experimental models for HPR0 make the risk evaluation of the presence of this avirulent, ubiquitous variant uncertain. This review summarizes the current knowledge related to molecular biology and pathogenicity of this important aquatic orthomyxovirus.
Collapse
Affiliation(s)
- E Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - T Markussen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
10
|
Cao J, Zhong N, Wang G, Wang M, Zhang B, Fu B, Wang Y, Zhang T, Zhang Y, Yang K, Chen Y, Yuan Q, Xia N. Nanobody-based sandwich reporter system for living cell sensing influenza A virus infection. Sci Rep 2019; 9:15899. [PMID: 31685871 PMCID: PMC6828950 DOI: 10.1038/s41598-019-52258-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 10/13/2019] [Indexed: 02/05/2023] Open
Abstract
The influenza epidemic is a huge burden to public health. Current influenza vaccines provide limited protection against new variants due to frequent mutation of the virus. The continual emergence of novel variants necessitates the method rapidly monitoring influenza virus infection in experimental systems. Although several replication-competent reporter viruses carrying fluorescent proteins or small luciferase have been generated in previous studies, visualizing influenza virus infection via such strategy requires reverse genetic modification for each viral strain which is usually time-consuming and inconvenient. Here, we created a novel influenza A nucleoprotein (NP) dependent reporter gene transcription activation module using NP-specific nanobodies. Our results demonstrated the modular design allowed reporter genes (mNeonGreen fluorescent protein and Gaussia luciferase) specifically expressing to detect intracellular NP protein, and therefore acts as a universal biosensor to monitor infection of various influenza A subtypes in living cells. The new system may provide a powerful tool to analyze influenza A infections at the cellular level to facilitate new antiviral drug discovery. Moreover, this approach may easily extend to develop live-cell biosensors for other viruses.
Collapse
Affiliation(s)
- Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
| | - Nicole Zhong
- Concordia International School Shanghai, 345 Huangyang Road Pudong, Shanghai, 201206, P.R. China
| | - Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
| | - Mingfeng Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
| | - Baohui Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Baorong Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kunyu Yang
- Xiamen International Travel Healthcare Center, Xiamen, China
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China.
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen, 361102, P.R. China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
11
|
Dawson WK, Lazniewski M, Plewczynski D. RNA structure interactions and ribonucleoprotein processes of the influenza A virus. Brief Funct Genomics 2019; 17:402-414. [PMID: 29040388 PMCID: PMC6252904 DOI: 10.1093/bfgp/elx028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In one more years, we will ‘celebrate’ an exact centenary of the Spanish flu pandemic. With the rapid evolution of the influenza virus, the possibility of novel pandemic remains ever a concern. This review covers our current knowledge of the influenza A virus: on the role of RNA in translation, replication, what is known of the expressed proteins and the protein products generated from alternative splicing, and on the role of base pairing in RNA structure. We highlight the main events associated with viral entry into the cell, the transcription and replication process, an export of the viral genetic material from the nucleus and the final release of the virus. We discuss the observed potential roles of RNA secondary structure (the RNA base-pairing arrangement) and RNA/RNA interactions in this scheme.
Collapse
Affiliation(s)
- Wayne K Dawson
- Bio-information Lab, University of Tokyo.,University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
| | - Michal Lazniewski
- University of Warsaw, Center of New Technologies (CeNT), Warsaw, Poland
| | | |
Collapse
|
12
|
Tang YS, Lo CY, Mok CKP, Chan PKS, Shaw PC. The Extended C-Terminal Region of Influenza C Virus Nucleoprotein Is Important for Nuclear Import and Ribonucleoprotein Activity. J Virol 2019; 93:e02048-18. [PMID: 30814281 PMCID: PMC6475786 DOI: 10.1128/jvi.02048-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The influenza C virus (ICV) is a human-pathogenic agent, and the infections are frequently identified in children. Compared to influenza A and B viruses, the nucleoprotein of ICV (NPC) has an extended C-terminal region of which the functional significance is ill defined. We observed that the nuclear localization signals (NLSs) found on the nucleoproteins of influenza A and B virus subtypes are absent at corresponding positions on ICV. Instead, we found that a long bipartite nuclear localization signal resides at the extended C-terminal region, spanning from R513 to K549. Our experimental data determined that the KKMK motif within this region plays important roles in both nuclear import and polymerase activity. Similar to the influenza A viruses, NPC also binds to multiple human importin α isoforms. Taken together, our results enhance the understanding of the virus-host interaction of the influenza C virus.IMPORTANCE As a member of the Orthomyxoviridae family, the polymerase complex of the influenza C virus structurally resembles its influenza A and influenza B virus counterparts, but the nucleoprotein differs by possessing an extra C-terminal region. We have characterized this region in view of nuclear import and interaction with the importin α protein family. Our results demonstrate the functional significance of a previously uncharacterized region on Orthomyxoviridae nucleoprotein (NP). Based on this work, we propose that importin α binding to influenza C virus NP is regulated by a long bipartite nuclear localization signal. Since the sequence of influenza D virus NP shares high homology to that of the influenza C virus, this work will also shed light on how influenza D virus NP functions.
Collapse
Affiliation(s)
- Yun-Sang Tang
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Yeung Lo
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
The structure of the nucleoprotein of Influenza D shows that all Orthomyxoviridae nucleoproteins have a similar NP CORE, with or without a NP TAIL for nuclear transport. Sci Rep 2019; 9:600. [PMID: 30679709 PMCID: PMC6346101 DOI: 10.1038/s41598-018-37306-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.4 Å resolution. The crystal structure of its core is similar to NP of other Influenza viruses. However, unlike A/NP and B/NP which possess a flexible amino-terminal tail containing nuclear localization signals (NLS) for their nuclear import, D/NP possesses a carboxy-terminal tail (D/NPTAIL). We show that D/NPTAIL harbors a bipartite NLS and designed C-terminal truncated mutants to demonstrate the role of D/NPTAIL for nuclear transport.
Collapse
|
14
|
Williams GD, Townsend D, Wylie KM, Kim PJ, Amarasinghe GK, Kutluay SB, Boon ACM. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 2018; 9:465. [PMID: 29386621 PMCID: PMC5792457 DOI: 10.1038/s41467-018-02886-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/04/2018] [Indexed: 02/03/2023] Open
Abstract
Influenza A virus nucleoprotein (NP) association with viral RNA (vRNA) is essential for packaging, but the pattern of NP binding to vRNA is unclear. Here we applied photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation (PAR-CLIP) to assess the native-state of NP-vRNA interactions in infected human cells. NP binds short fragments of RNA (~12 nucleotides) non-uniformly and without apparent sequence specificity. Moreover, NP binding is reduced at specific locations within the viral genome, including regions previously identified as required for viral genome segment packaging. Synonymous mutations designed to alter the predicted RNA structures in these low-NP-binding regions impact genome packaging and result in virus attenuation, whereas control mutations or mutagenesis of NP-bound regions have no effect. Finally, we demonstrate that the sequence conservation of low-NP-binding regions is required in multiple genome segments for propagation of diverse mammalian and avian IAV in host cells.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Dana Townsend
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kristine M Wylie
- Department of Pediatrics at Washington University School of Medicine, St Louis, MO, 63110, USA
- The McDonnell Genome Institute at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Preston J Kim
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Biochemistry and Biophysics at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Adrianus C M Boon
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ, Krug RM, Sawyer SL. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe 2017; 22:627-638.e7. [PMID: 29107643 PMCID: PMC6309188 DOI: 10.1016/j.chom.2017.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/21/2017] [Accepted: 09/26/2017] [Indexed: 11/20/2022]
Abstract
TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex.
Collapse
Affiliation(s)
- Nicholas R Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ligang Zhou
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, USA
| | - Yusong R Guo
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Chen Zhao
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, USA
| | - Yizhi J Tao
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Robert M Krug
- Department of Molecular Biosciences, LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, TX 78712, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
16
|
Miyafusa T, Shibuya R, Nishima W, Ohara R, Yoshida C, Honda S. Backbone Circularization Coupled with Optimization of Connecting Segment in Effectively Improving the Stability of Granulocyte-Colony Stimulating Factor. ACS Chem Biol 2017; 12:2690-2696. [PMID: 28895717 DOI: 10.1021/acschembio.7b00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Backbone circularization of protein is a powerful method to improve its structural stability. In this paper, we presumed that a tight connection leads to much higher stability. Therefore, we designed circularized variants of a granulocyte-colony stimulating factor (G-CSF) with a structurally optimized terminal connection. To estimate the appropriate length of the connection, we surveyed the Protein Data Bank to find local structures as a model for the connecting segment. We set the library of local structures composed of "helix-loop-helix," subsequently selected entries similar to the G-CSF terminus, and finally sorted the hit structures according to the loop length. Two, five, or nine loop residues were frequently observed; thus, three circularized variants (C163, C166, and C170) were constructed, prepared, and evaluated. All circularized variants demonstrated a higher thermal stability than linear G-CSF (L175). In particular, C166 that retained five connecting residues demonstrated apparent Tm values of 69.4 °C, which is 8.7 °C higher than that of the circularized variant with no truncation (C177), indicating that the optimization of the connecting segment is effective for enhancing the overall structural stability. C166 also showed higher proteolytic stability against both endoprotease and exopeptidase than L175. We anticipate that the present study will contribute to the improvement in the general design of circularized protein and development of G-CSF biobetters.
Collapse
Affiliation(s)
- Takamitsu Miyafusa
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Risa Shibuya
- Department
of Computational Biology and Medical Sciences, Graduate School of
Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Wataru Nishima
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Rie Ohara
- Department
of Computational Biology and Medical Sciences, Graduate School of
Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Chuya Yoshida
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Computational Biology and Medical Sciences, Graduate School of
Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
17
|
Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res 2017; 45:8968-8977. [PMID: 28911100 PMCID: PMC5587783 DOI: 10.1093/nar/gkx584] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments that are coated by viral nucleoprotein (NP) molecules. Classically, the interaction between NP and viral RNA (vRNA) is depicted as a uniform pattern of ‘beads on a string’. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP), we identified the vRNA binding profiles of NP for two H1N1 IAV strains in virions. Contrary to the prevailing model for vRNA packaging, NP does not bind vRNA uniformly in the A/WSN/1933 and A/California/07/2009 strains, but instead each vRNA segment exhibits a unique binding profile, containing sites that are enriched or poor in NP association. Intriguingly, both H1N1 strains have similar yet distinct NP binding profiles despite extensive sequence conservation. Peaks identified by HITS-CLIP were verified as true NP binding sites based on insensitivity to DNA antisense oligonucleotide-mediated RNase H digestion. Moreover, nucleotide content analysis of NP peaks revealed that these sites are relatively G-rich and U-poor compared to the genome-wide nucleotide content, indicating an as-yet unidentified sequence bias for NP association in vivo. Taken together, our genome-wide study of NP–vRNA interaction has implications for the understanding of influenza vRNA architecture and genome packaging.
Collapse
Affiliation(s)
- Nara Lee
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Valerie Le Sage
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Adalena V Nanni
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Dan J Snyder
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Vaughn S Cooper
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Seema S Lakdawala
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
18
|
Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association. Proc Natl Acad Sci U S A 2017; 114:8550-8555. [PMID: 28739952 DOI: 10.1073/pnas.1701747114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.
Collapse
|
19
|
Fan Y, Guo YR, Yuan W, Zhou Y, Holt MV, Wang T, Demeler B, Young NL, Zhong W, Tao YJ. Structure of a pentameric virion-associated fiber with a potential role in Orsay virus entry to host cells. PLoS Pathog 2017; 13:e1006231. [PMID: 28241071 PMCID: PMC5344674 DOI: 10.1371/journal.ppat.1006231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/09/2017] [Accepted: 02/10/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a β-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.
Collapse
Affiliation(s)
- Yanlin Fan
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Yusong R. Guo
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Wang Yuan
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Ying Zhou
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Matthew V. Holt
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Tao Wang
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Borries Demeler
- The University of Texas Health Science Center at San Antonio, Department of Biochemistry, MC 7760, 7703 Floyd Curl Drive, San Antonio, Texas, United States of America
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States of America
| | - Weiwei Zhong
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, MS-140, Houston, Texas, United States of America
| |
Collapse
|
20
|
Gallagher JR, Torian U, McCraw DM, Harris AK. Structural studies of influenza virus RNPs by electron microscopy indicate molecular contortions within NP supra-structures. J Struct Biol 2016; 197:294-307. [PMID: 28007449 DOI: 10.1016/j.jsb.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
Ribonucleoprotein (RNP) complexes of influenza viruses are composed of multiple copies of the viral nucleoprotein (NP) that can form filamentous supra-structures. RNPs package distinct viral genomic RNA segments of different lengths into pleomorphic influenza virions. RNPs also function in viral RNA transcription and replication. Different RNP segments have varying lengths, but all must be incorporated into virions during assembly and then released during viral entry for productive infection cycles. RNP structures serve varied functions in the viral replication cycle, therefore understanding their molecular organization and flexibility is essential to understanding these functions. Here, we show using electron tomography and image analyses that isolated RNP filaments are not rigid helical structures, but instead display variations in lengths, curvatures, and even tolerated kinks and local unwinding. Additionally, we observed NP rings within RNP preparations, which were commonly composed of 5, 6, or 7 NP molecules and were of similar widths to filaments, suggesting plasticity in NP-NP interactions mediate RNP structural polymorphism. To demonstrate that NP alone could generate rings of variable oligomeric state, we performed 2D single particle image analysis on recombinant NP and found that rings of 4 and 5 protomers dominated, but rings of all compositions up to 7 were directly observed with variable frequency. This structural flexibility may be needed as RNPs carry out the interactions and conformational changes required for RNP assembly and genome packaging as well as virus uncoating.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Lima RN, Faheem M, Barbosa JARG, Polêto MD, Verli H, Melo FL, Resende RO. Homology modeling and molecular dynamics provide structural insights into tospovirus nucleoprotein. BMC Bioinformatics 2016; 17:489. [PMID: 28105914 PMCID: PMC5249003 DOI: 10.1186/s12859-016-1339-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Tospovirus is a plant-infecting genus within the family Bunyaviridae, which also includes four animal-infecting genera: Hantavirus, Nairovirus, Phlebovirus and Orthobunyavirus. Compared to these members, the structures of Tospovirus proteins still are poorly understood. Despite multiple studies have attempted to identify candidate N protein regions involved in RNA binding and protein multimerization for tospovirus using yeast two-hybrid systems (Y2HS) and site-directed mutagenesis, the tospovirus ribonucleocapsids (RNPs) remains largely uncharacterized at the molecular level and the lack of structural information prevents detailed insight into these interactions. Results Here we used the nucleoprotein structure of LACV (La Crosse virus-Orthobunyavirus) and molecular dynamics simulations to access the structure and dynamics of the nucleoprotein from tospovirus GRSV (Groundnut ringspot virus). The resulting model is a monomer composed by a flexible N-terminal and C-terminal arms and a globular domain with a positively charged groove in which RNA is deeply encompassed. This model allowed identifying the candidate amino acids residues involved in RNA interaction and N-N multimerization. Moreover, most residues predicted to be involved in these interactions are highly conserved among tospoviruses. Conclusions Crucially, the interaction model proposed here for GRSV N is further corroborated by the all available mutational studies on TSWV (Tomato spotted wilt virus) N, so far. Our data will help designing further and more accurate mutational and functional studies of tospovirus N proteins. In addition, the proposed model may shed light on the mechanisms of RNP shaping and could allow the identification of essential amino acid residues as potential targets for tospovirus control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1339-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rayane Nunes Lima
- Laboratório de Virologia Vegetal, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Muhammad Faheem
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratório de Biofísica, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marcelo Depólo Polêto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Lucas Melo
- Laboratório de Virologia Vegetal, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Renato Oliveira Resende
- Laboratório de Virologia Vegetal, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
22
|
Fourrier MCS, Collet B. Production of infectious salmon anaemia virus (ISAV) ribonucleoprotein complexes using a mammalian cell based minigenome system. J Virol Methods 2016; 239:75-82. [PMID: 27840076 DOI: 10.1016/j.jviromet.2016.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/30/2016] [Indexed: 11/28/2022]
Abstract
Developments in recombinant virus techniques have been crucial to understand the mechanisms of virulence acquisition and study the replication of many different negatively stranded RNA viruses. However, such technology has been lacking for infectious salmon anaemia virus (ISAV) until recently. This was due in part to the lack of a Polymerase I promoter in Atlantic salmon to drive the production of recombinant vRNA. Therefore, the present study investigated a different alternative to produce ISAV recombinant vRNA, based on Mouse Pol I promoter/terminator sequences and expression in baby hamster kidney (BHK-21) cells. As a first step, a pathogenic ISAV was demonstrated to replicate and produce viable virions in BHK-21 cells. This indicated that the virus could use the mammalian cellular and nuclear machinery to produce vRNA segments and viral proteins, albeit in a limited capacity. Co-transfection of vRNA expressing plasmids with cytomegalovirus (CMV) promoter constructs coding for the three viral polymerase and nucleoprotein led to the generation of functional ribonucleoproteins (RNPs) which expressed either, green fluorescence protein (GFP) or firefly luciferase (FF). Further experiments demonstrated that a 21h incubation at 37°C was optimal for RNPs production. Inhibition by ribavirin confirmed that FF expression was linked to specific RNPs polymerase transcription. The present minigenome system provides a novel and alternative approach to investigate various aspects of ISAV replication and potentially those of other negatively stranded RNA viruses. Expression of RNPs in mammalian cells could also provide a method for the rapid screening of anti-viral compounds targeting ISAV replication.
Collapse
Affiliation(s)
| | - Bertrand Collet
- Marine Scotland Science, Marine Laboratory, AB11 9DB, Aberdeen, United Kingdom.
| |
Collapse
|
23
|
Secondary structure model of the naked segment 7 influenza A virus genomic RNA. Biochem J 2016; 473:4327-4348. [PMID: 27694388 DOI: 10.1042/bcj20160651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
The influenza A virus (IAV) genome comprises eight negative-sense viral (v)RNA segments. The seventh segment of the genome encodes two essential viral proteins and is specifically packaged alongside the other seven vRNAs. To gain insights into the possible roles of RNA structure both within and without virions, a secondary structure model of a naked (protein-free) segment 7 vRNA (vRNA7) has been determined using chemical mapping and thermodynamic energy minimization. The proposed structure model was validated using microarray mapping, RNase H cleavage and comparative sequence analysis. Additionally, the detailed structures of three vRNA7 fragment constructs - comprising independently folded subdomains - were determined. Much of the proposed vRNA7 structure is preserved between IAV strains, suggesting their importance in the influenza replication cycle. Possible structure rearrangements, which allow or preclude long-range RNA interactions, are also proposed.
Collapse
|
24
|
Binding of RNA by the Nucleoproteins of Influenza Viruses A and B. Viruses 2016; 8:v8090247. [PMID: 27649229 PMCID: PMC5035961 DOI: 10.3390/v8090247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
This paper describes a biochemical study for making complexes between the nucleoprotein of influenza viruses A and B (A/NP and B/NP) and small RNAs (polyUC RNAs from 5 to 24 nucleotides (nt)), starting from monomeric proteins. We used negative stain electron microscopy, size exclusion chromatography-multi-angle laser light scattering (SEC-MALLS) analysis, and fluorescence anisotropy measurements to show how the NP-RNA complexes evolve. Both proteins make small oligomers with 24-nt RNAs, trimers for A/NP, and dimers, tetramers, and larger complexes for B/NP. With shorter RNAs, the affinities of NP are all in the same range at 50 mM NaCl, showing that the RNAs bind on the same site. The affinity of B/NP for a 24-nt RNA does not change with salt. However, the affinity of A/NP for a 24-nt RNA is lower at 150 and 300 mM NaCl, suggesting that the RNA binds to another site, either on the same protomer or on a neighbour protomer. For our fluorescence anisotropy experiments, we used 6-fluorescein amidite (FAM)-labelled RNAs. By using a (UC)6-FAM3′ RNA with 150 mM NaCl, we observed an interesting phenomenon that gives macromolecular complexes similar to the ribonucleoprotein particles purified from the viruses.
Collapse
|
25
|
Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 2016; 13:883-94. [PMID: 27399914 DOI: 10.1080/15476286.2016.1208331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
As well as encoding viral proteins, genomes of RNA viruses harbor secondary and tertiary RNA structures that have been associated with functions essential for successful replication and propagation. Here, we identified stem-loop structures that are extremely conserved among 1,884 M segment sequences of influenza A virus (IAV) strains from various subtypes and host species using computational and evolutionary methods. These structures were predicted within the 3' and 5' ends of the coding regions of M1 and M2, respectively, where packaging signals have been previously proposed to exist. These signals are thought to be required for the incorporation of a single copy of 8 different negative-strand RNA segments (vRNAs) into an IAV particle. To directly test the functionality of conserved stem-loop structures, we undertook reverse genetic experiments to introduce synonymous mutations designed to disrupt secondary structures predicted at 3 locations and found them to attenuate infectivity of recombinant virus. In one mutant, predicted to disrupt stem loop structure at nucleotide positions 219-240, attenuation was more evident at increased temperature and was accompanied by an increase in the production of defective virus particles. Our results suggest that the conserved secondary structures predicted in the M segment are involved in the production of infectious viral particles during IAV replication.
Collapse
Affiliation(s)
- Yuki Kobayashi
- a Nihon University Veterinary Research Center , Fujisawa , Kanagawa , Japan.,b Department of Zoology , University of Oxford , Oxford , UK
| | - Bernadeta Dadonaite
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Neeltje van Doremalen
- c Section of Virology, Department of Medicine, Imperial College London , London , UK.,d Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Yoshiyuki Suzuki
- e Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan
| | - Wendy S Barclay
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Oliver G Pybus
- b Department of Zoology , University of Oxford , Oxford , UK
| |
Collapse
|
26
|
Abstract
Influenza A viruses (IAVs) harbor a segmented RNA genome that is organized into eight distinct viral ribonucleoprotein (vRNP) complexes. Although a segmented genome may be a major advantage to adapt to new host environments, it comes at the cost of a highly sophisticated genome packaging mechanism. Newly synthesized vRNPs conquer the cellular endosomal recycling machinery to access the viral budding site at the plasma membrane. Genome packaging sequences unique to each RNA genome segment are thought to be key determinants ensuring the assembly and incorporation of eight distinct vRNPs into progeny viral particles. Recent studies using advanced fluorescence microscopy techniques suggest the formation of vRNP sub-bundles (comprising less than eight vRNPs) during their transport on recycling endosomes. The formation of such sub-bundles might be required for efficient packaging of a bundle of eight different genomes segments at the budding site, further highlighting the complexity of IAV genome packaging.
Collapse
|
27
|
Collier AM, Lyytinen OL, Guo YR, Toh Y, Poranen MM, Tao YJ. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus. PLoS Pathog 2016; 12:e1005523. [PMID: 27078841 PMCID: PMC4831847 DOI: 10.1371/journal.ppat.1005523] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023] Open
Abstract
During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.
Collapse
Affiliation(s)
- Aaron M. Collier
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Outi L. Lyytinen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Yusong R. Guo
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Yukimatsu Toh
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail: (YJT); (MMP)
| | - Yizhi J. Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail: (YJT); (MMP)
| |
Collapse
|
28
|
Liu CL, Hung HC, Lo SC, Chiang CH, Chen IJ, Hsu JTA, Hou MH. Using mutagenesis to explore conserved residues in the RNA-binding groove of influenza A virus nucleoprotein for antiviral drug development. Sci Rep 2016; 6:21662. [PMID: 26916998 PMCID: PMC4768256 DOI: 10.1038/srep21662] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Nucleoprotein (NP) is the most abundant type of RNA-binding viral protein in influenza A virus-infected cells and is necessary for viral RNA transcription and replication. Recent studies demonstrated that influenza NP is a valid target for antiviral drug development. The surface of the groove, covered with numerous conserved residues between the head and body domains of influenza A NP, plays a crucial role in RNA binding. To explore the mechanism by which NP binds RNA, we performed a series of site-directed mutagenesis in the RNA-binding groove, followed by surface plasmon resonance (SPR), to characterize the interactions between RNA and NP. Furthermore, a role of Y148 in NP stability and NP-RNA binding was evaluated. The aromatic residue of Y148 was found to stack with a nucleotide base. By interrupting the stacking interaction between Y148 and an RNA base, we identified an influenza virus NP inhibitor, (E, E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -1,6-heptadiene-3,5-dione; this inhibitor reduced the NP's RNA-binding affinity and hindered viral replication. Our findings will be useful for the development of new drugs that disrupt the interaction between RNA and viral NP in the influenza virus.
Collapse
Affiliation(s)
- Chia-Lin Liu
- National Chung Hsing University, Department of Life Science, Taichung, 40227, Taiwan
| | - Hui-Chen Hung
- National Health Research Institutes, Institute of Biotechnology and Pharmaceutical Research, Miaoli, 35053, Taiwan
| | - Shou-Chen Lo
- National Chung Hsing University, Institute of Genomics and Bioinformatics, Taichung, 40227, Taiwan
| | - Ching-Hui Chiang
- National Chung Hsing University, Department of Life Science, Taichung, 40227, Taiwan
| | - I-Jung Chen
- National Health Research Institutes, Institute of Biotechnology and Pharmaceutical Research, Miaoli, 35053, Taiwan
| | - John T-A Hsu
- National Health Research Institutes, Institute of Biotechnology and Pharmaceutical Research, Miaoli, 35053, Taiwan
| | - Ming-Hon Hou
- National Chung Hsing University, Department of Life Science, Taichung, 40227, Taiwan.,National Chung Hsing University, Institute of Genomics and Bioinformatics, Taichung, 40227, Taiwan.,National Chung Hsing University, Institute of Biotechnology, Taichung, 40227, Taiwan
| |
Collapse
|
29
|
Lenartowicz E, Kesy J, Ruszkowska A, Soszynska-Jozwiak M, Michalak P, Moss WN, Turner DH, Kierzek R, Kierzek E. Self-Folding of Naked Segment 8 Genomic RNA of Influenza A Virus. PLoS One 2016; 11:e0148281. [PMID: 26848969 PMCID: PMC4743857 DOI: 10.1371/journal.pone.0148281] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/15/2016] [Indexed: 01/10/2023] Open
Abstract
Influenza A is a negative sense RNA virus that kills hundreds of thousands of humans each year. Base pairing in RNA is very favorable, but possibilities for RNA secondary structure of the influenza genomic RNA have not been investigated. This work presents the first experimentally-derived exploration of potential secondary structure in an influenza A naked (protein-free) genomic segment. Favorable folding regions are revealed by in vitro chemical structure mapping, thermodynamics, bioinformatics, and binding to isoenergetic microarrays of an entire natural sequence of the 875 nt segment 8 vRNA and of a smaller fragment. Segment 8 has thermodynamically stable and evolutionarily conserved RNA structure and encodes essential viral proteins NEP and NS1. This suggests that vRNA self-folding may generate helixes and loops that are important at one or more stages of the influenza life cycle.
Collapse
Affiliation(s)
- Elzbieta Lenartowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Agnieszka Ruszkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Marta Soszynska-Jozwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Paula Michalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Walter N. Moss
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States of America
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York, 14627, United States of America
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61–704 Poznan, Poland
- * E-mail:
| |
Collapse
|
30
|
Mondal A, Potts GK, Dawson AR, Coon JJ, Mehle A. Phosphorylation at the homotypic interface regulates nucleoprotein oligomerization and assembly of the influenza virus replication machinery. PLoS Pathog 2015; 11:e1004826. [PMID: 25867750 PMCID: PMC4395114 DOI: 10.1371/journal.ppat.1004826] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/21/2015] [Indexed: 11/22/2022] Open
Abstract
Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. Replication and transcription by negative-sense RNA viruses occurs in large macromolecular complexes. These complexes contain the viral polymerase, genomic RNA, and multiple copies of nucleoprotein that bind RNA and oligomerize to coat the genome. For influenza virus, nucleoprotein (NP) non-specifically binds nucleic acids and spontaneously oligomerizes. It is essential that a portion of NP be maintained as a monomer so that it can selectively oligomerize into replication complexes. Despite the fact that this process must be tightly regulated during the viral life cycle, how this regulation is achieved is largely unknown. Here we show that phosphorylation of NP negatively regulates assembly of the influenza virus replication machinery. We identified two phosphorylation sites on opposite sides of the NP:NP interface and showed that phosphorylation at either site blocks homotypic interactions, distorting the monomer:oligomer balance of NP in cells and severely impairing virus replication. Our findings show that the phospho-regulated conversion of NP between mono- and oligomeric states is important for RNP formation, gene expression and viral replication. Moreover, we showed that these critical phosphorylation sites play the same role in influenza B virus and are likely present in influenza C and D viruses, suggesting our results are broadly applicable across viral strains and genera and reveal a global regulatory strategy for Orthomyxoviridae.
Collapse
Affiliation(s)
- Arindam Mondal
- Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gregory K. Potts
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anthony R. Dawson
- Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ortín J, Martín-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology 2015; 479-480:532-44. [PMID: 25824479 DOI: 10.1016/j.virol.2015.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 11/15/2022]
Abstract
The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes.
Collapse
Affiliation(s)
- Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid, Spain.
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid, Spain.
| |
Collapse
|
32
|
Chutiwitoonchai N, Kakisaka M, Yamada K, Aida Y. Comparative analysis of seven viral nuclear export signals (NESs) reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP) in influenza A virus replication. PLoS One 2014; 9:e105081. [PMID: 25119991 PMCID: PMC4132019 DOI: 10.1371/journal.pone.0105081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES) consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ) residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4) was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues) within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function during viral replication.
Collapse
Affiliation(s)
| | | | - Kazunori Yamada
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Koto, Tokyo, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
33
|
Gultyaev AP, Tsyganov-Bodounov A, Spronken MIJ, van der Kooij S, Fouchier RAM, Olsthoorn RCL. RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol 2014; 11:942-52. [PMID: 25180940 DOI: 10.4161/rna.29730] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, The Netherlands
| | - Anton Tsyganov-Bodounov
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands;; Current address: Illumina UK Ltd., Chesterford Research Park, Little Chesterford, Essex, UK
| | | | - Sander van der Kooij
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Current address: BaseClear B.V., Einsteinweg, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Gerber M, Isel C, Moules V, Marquet R. Selective packaging of the influenza A genome and consequences for genetic reassortment. Trends Microbiol 2014; 22:446-55. [PMID: 24798745 DOI: 10.1016/j.tim.2014.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/25/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
Influenza A viruses package their segmented RNA genome in a selective manner. Electron tomography, biochemical assays, and replication assays of viruses produced by reverse genetics recently unveiled molecular details of this mechanism, whereby different influenza viral strains form different and unique networks of direct intermolecular RNA-RNA interactions. Together with detailed views of the three-dimensional structure of the viral ribonucleoparticles, these recent advances help us understand the rules that govern genome packaging. They also have deep implications for the genetic reassortment processes, which are responsible for devastating pandemics.
Collapse
Affiliation(s)
- Marie Gerber
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), 15 rue René Descartes, 67084 Strasbourg, France
| | - Catherine Isel
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), 15 rue René Descartes, 67084 Strasbourg, France
| | - Vincent Moules
- Virologie et Pathologie Humaine, Université Lyon 1, EA4610, Faculté de Médecine RTH Laennec, 69008 Lyon, France; VirNext, Université Lyon 1, EA4610, Faculté de Médecine RTH Laennec, 69008 Lyon, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Centre National de Recherche Scientifique (CNRS), Institut de Biologie Moléculaire et Cellulaire (IBMC), 15 rue René Descartes, 67084 Strasbourg, France.
| |
Collapse
|
35
|
Reguera J, Cusack S, Kolakofsky D. Segmented negative strand RNA virus nucleoprotein structure. Curr Opin Virol 2014; 5:7-15. [PMID: 24486721 DOI: 10.1016/j.coviro.2014.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Negative strand RNA virus (NSV) genomes are never free, but always found assembled with multiple copies of their nucleoprotein, as RNPs. A flurry of papers describing the X-ray crystal structures of several segmented NSV nucleoproteins have recently appeared. The most significant feature of these various structures is that the arms that are used to oligomerize the nucleoproteins on their genome RNAs are highly flexible, permitting these RNPs to assume virtually unlimited geometries. The structural flexibility of segmented NSV RNPs is undoubtedly important in all aspects of their biology, including genome replication and circularization, and the selection of one copy of each segment for packaging into virus particles.
Collapse
Affiliation(s)
- Juan Reguera
- European Molecular Biology Laboratory, Grenoble Outstation and UJF-EMBL-CNRS International Unit of Virus Host-Cell Interactions, 6 rue Jules Horowitz, BP181, Grenoble Cedex 9 38042, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and UJF-EMBL-CNRS International Unit of Virus Host-Cell Interactions, 6 rue Jules Horowitz, BP181, Grenoble Cedex 9 38042, France
| | - Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1 rue Michel-Servet, Geneva 1211, Switzerland.
| |
Collapse
|