1
|
Glen KA, Lamont IL. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol Spectr 2024; 12:e0069424. [PMID: 39248479 PMCID: PMC11448201 DOI: 10.1128/spectrum.00694-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Pseudomonas aeruginosa is a highly problematic opportunistic pathogen that causes a range of different infections. Infections are commonly treated with β-lactam antibiotics, including cephalosporins, monobactams, penicillins, and carbapenems, with carbapenems regarded as antibiotics of last resort. Isolates of P. aeruginosa can contain horizontally acquired bla genes encoding β-lactamase enzymes, but the extent to which these contribute to β-lactam resistance in this species has not been systematically quantified. The overall aim of this research was to address this knowledge gap by quantifying the frequency of β-lactamase-encoding genes in P. aeruginosa and by determining the effects of β-lactamases on susceptibility of P. aeruginosa to β-lactams. Genome analysis showed that β-lactamase-encoding genes are present in 3% of P. aeruginosa but are enriched in carbapenem-resistant isolates (35%). To determine the substrate antibiotics, 10 β-lactamases were expressed from an integrative plasmid in the chromosome of P. aeruginosa reference strain PAO1. The β-lactamases reduced susceptibility to a variety of clinically used antibiotics, including carbapenems (meropenem, imipenem), penicillins (ticarcillin, piperacillin), cephalosporins (ceftazidime, cefepime), and a monobactam (aztreonam). Different enzymes acted on different β-lactams. β-lactamases encoded by the genomes of P. aeruginosa clinical isolates had similar effects to the enzymes expressed in strain PAO1. Genome engineering was used to delete β-lactamase-encoding genes from three carbapenem-resistant clinical isolates and increased susceptibility to substrate β-lactams. Our findings demonstrate that acquired β-lactamases play an important role in β-lactam resistance in P. aeruginosa, identifying substrate antibiotics for a range of enzymes and quantifying their contributions to resistance.IMPORTANCEPseudomonas aeruginosa is an extremely problematic pathogen, with isolates that are resistant to the carbapenem class of β-lactam antibiotics being in critical need of new therapies. Genes encoding β-lactamase enzymes that degrade β-lactam antibiotics can be present in P. aeruginosa, including carbapenem-resistant isolates. Here, we show that β-lactamase genes are over-represented in carbapenem-resistant isolates, indicating their key role in resistance. We also show that different β-lactamases alter susceptibility of P. aeruginosa to different β-lactam antibiotics and quantify the effects of selected enzymes on β-lactam susceptibility. This research significantly advances the understanding of the contributions of acquired β-lactamases to antibiotic resistance, including carbapenem resistance, in P. aeruginosa and by implication in other species. It has potential to expedite development of methods that use whole genome sequencing of infecting bacteria to inform antibiotic treatment, allowing more effective use of antibiotics, and facilitate the development of new antibiotics.
Collapse
Affiliation(s)
- Karl A Glen
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
González LJ, Bahr G, González MM, Bonomo RA, Vila AJ. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 2023; 19:1116-1126. [PMID: 37188957 PMCID: PMC11534350 DOI: 10.1038/s41589-023-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Collapse
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.
| |
Collapse
|
3
|
Fung YH, Kong WP, Leung ASL, Du R, So PK, Wong WL, Leung YC, Chen YW, Wong KY. NDM-1 Zn1-binding residue His116 plays critical roles in antibiotic hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140833. [PMID: 35944887 DOI: 10.1016/j.bbapap.2022.140833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bacteria expressing NDM-1 have been labeled as superbugs because it confers upon them resistance to a broad range of β-lactam antibiotics. The enzyme has a di‑zinc active centre, with the Zn2 site extensively studied. The roles of active-site Zn1 ligand residues are, however, still not fully understood. We carried out structure-function studies using the mutants, H116A, H116N, and H116Q. Zinc content analysis showed that Zn1 binding was weakened by 40 to 60% in the H116 mutants. The enzymatic-activity studies showed that the lower hydrolysis rates were mainly caused by their weaker substrate binding. The catalytic efficiency (kcat/Km) of the mutants followed the order: WT > > H116Q (decreased by 4-20 fold) > H116A (decreased by 20-700 fold) ≥ H116N (decreased by 6-800 fold). The maximum effect was observed on H116N against penicillin G, whereas ampicillin was not hydrolyzed at all. The fold-increase of Km values, which informs the weakening of substrate binding, were: H116A by 5-45 fold; H116N by 6-100 fold; H116Q by 2-10 fold. Molecular dynamics simulations suggested that the Zn1 site mutations affected the positions of Zn2 and the bridging hydroxide, by 0.8 to 1.2 Å, with the largest changes of ~1.5 Å observed on Zn2 ligand C221. A native hydrogen bond between H118 and D236 was disrupted in the H116N and H116Q mutants, which led to increased flexibility of loop 10. Consequently, residue N233 was no longer maintained at an optimal position for substrate binding. H116 connected loop 7 across Zn1 to loop 10, thereby contributed to the overall integrity. This work revealed that the H116-Zn1 interaction plays a critical role in defining the substrate-binding site. From these results, it can be inferred that inhibition strategies targeting the zinc ions may be a new direction for drug development.
Collapse
Affiliation(s)
- Yik-Hong Fung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Po Kong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Alan Siu Lun Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ruolan Du
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pu-Kin So
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu Wai Chen
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
5
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
6
|
Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HKS. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J Antimicrob Chemother 2021; 75:2554-2563. [PMID: 32464640 PMCID: PMC7443720 DOI: 10.1093/jac/dkaa175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure-activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. OBJECTIVES To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. METHODS The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). RESULTS Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. CONCLUSIONS These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.
Collapse
Affiliation(s)
- Christopher Fröhlich
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Stathis D Kotsakis
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Institute of Marine Research, Bergen, Norway
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Antelo GT, Vila AJ, Giedroc DP, Capdevila DA. Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface. Trends Microbiol 2021; 29:441-457. [PMID: 32951986 PMCID: PMC7969482 DOI: 10.1016/j.tim.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
The molecular evolution of the adaptive response at the host-pathogen interface has been frequently referred to as an 'arms race' between the host and bacterial pathogens. The innate immune system employs multiple strategies to starve microbes of metals. Pathogens, in turn, develop successful strategies to maintain access to bioavailable metal ions under conditions of extreme restriction of transition metals, or nutritional immunity. However, the processes by which evolution repurposes or re-engineers host and pathogen proteins to perform or refine new functions have been explored only recently. Here we review the molecular evolution of several human metalloproteins charged with restricting bacterial access to transition metals. These include the transition metal-chelating S100 proteins, natural resistance-associated macrophage protein-1 (NRAMP-1), transferrin, lactoferrin, and heme-binding proteins. We examine their coevolution with bacterial transition metal acquisition systems, involving siderophores and membrane-spanning metal importers, and the biological specificity of allosteric transcriptional regulatory proteins tasked with maintaining bacterial metallostasis. We also discuss the evolution of metallo-β-lactamases; this illustrates how rapid antibiotic-mediated evolution of a zinc metalloenzyme obligatorily occurs in the context of host-imposed nutritional immunity.
Collapse
Affiliation(s)
- Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Cui DY, Yang Y, Bai MM, Han JX, Wang CC, Kong HT, Shen BY, Yan DC, Xiao CL, Liu YS, Zhang E. Systematic research of H 2dedpa derivatives as potent inhibitors of New Delhi Metallo-β-lactamase-1. Bioorg Chem 2020; 101:103965. [PMID: 32485471 DOI: 10.1016/j.bioorg.2020.103965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1), a Zn (II)-dependent enzyme, can catalyze the hydrolysis of almost all β-lactam antibiotics including carbapenems, resulting in bacterial antibiotic resistance, which threatens public health globally. Based on our finding that H2dedpa is as an efficient NDM-1 inhibitor, a series of H2dedpa derivatives was systematically prepared. These compounds exhibited significant activity against NDM-1, with IC50 values 0.06-0.94 μM. In vitro, compounds 6k and 6n could restore the activity of meropenem against Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis possessing either NDM or IMP. In particular, the activity of meropenem against E. coli producing NDM-4 could be improved up to 5333 times when these two compounds were used. Time-kill cell-based assays showed that 99.9% of P. mirabilis were killed when treated with meropenem in combination with compound 6k or 6n. Furthermore, compounds 6k and 6n were nonhemolytic (HC50 > 1280 μg/mL) and showed low toxicity toward mammalian (HeLa) cells. Mechanistic studies indicated that compounds 6k and 6n inhibit NDM-1 by chelating the Zn2+ ion of the enzyme.
Collapse
Affiliation(s)
- De-Yun Cui
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng-Meng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiang-Xue Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Cong-Cong Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hong-Tao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo-Yuan Shen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Da-Chao Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chun-Ling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi-Shuang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617. [PMID: 31399590 PMCID: PMC6689000 DOI: 10.1038/s41467-019-11615-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
The worldwide dissemination of metallo-β-lactamases (MBLs), mediating resistance to carbapenem antibiotics, is a major public health problem. The extent of dissemination of MBLs such as VIM-2, SPM-1 and NDM among Gram-negative pathogens cannot be explained solely based on the associated mobile genetic elements or the resistance phenotype. Here, we report that MBL host range is determined by the impact of MBL expression on bacterial fitness. The signal peptide sequence of MBLs dictates their adaptability to each host. In uncommon hosts, inefficient processing of MBLs leads to accumulation of toxic intermediates that compromises bacterial growth. This fitness cost explains the exclusion of VIM-2 and SPM-1 from Escherichia coli and Acinetobacter baumannii, and their confinement to Pseudomonas aeruginosa. By contrast, NDMs are expressed without any apparent fitness cost in different bacteria, and are secreted into outer membrane vesicles. We propose that the successful dissemination and adaptation of MBLs to different bacterial hosts depend on protein determinants that enable host adaptability and carbapenem resistance. Metallo-β-lactamases (MBLs) confer resistance to carbapenem antibiotics. Here, López et al. show that the host range of MBLs depends on the efficiency of MBL signal peptide processing and secretion into outer membrane vesicles, which affects bacterial fitness.
Collapse
|
10
|
Mojica MF, Rutter JD, Taracila M, Abriata LA, Fouts DE, Papp-Wallace KM, Walsh TJ, LiPuma JJ, Vila AJ, Bonomo RA. Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States. mBio 2019; 10:e00405-19. [PMID: 31266860 PMCID: PMC6606795 DOI: 10.1128/mbio.00405-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the "first-line" antibiotic to treat S. maltophilia Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen.IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D Rutter
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Magdalena Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Krisztina M Papp-Wallace
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Thomas J Walsh
- Transplantation Oncology Infectious Diseases Program, Weill Cornell Medical Center, New York, New York, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
11
|
Socha RD, Chen J, Tokuriki N. The Molecular Mechanisms Underlying Hidden Phenotypic Variation among Metallo-β-Lactamases. J Mol Biol 2019; 431:1172-1185. [PMID: 30769117 DOI: 10.1016/j.jmb.2019.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Genetic variation among orthologous genes has been largely formed through neutral genetic drift while maintaining the functional role of these genes. However, because the evolution of gene occurs in the context of each host organism, their sequence changes are also associated with adaptation to a specific environment. Thus, genetic variation can create critical phenotypic variation, particularly when genes are transferred to a new host by horizontal gene transfer. Unveiling "hidden phenotypic variation" is particularly important for genes that confer resistance to antibiotics. However, our understanding of the molecular mechanisms that underlie phenotypic variation remains limited. Here we sought to determine the extent of phenotypic variation in the B1 metallo-β-lactamase (MBL) family and its molecular basis by systematically characterizing eight MBL orthologs, including NDM-1 and VIM-2 and IMP-1. We found that these MBLs confer diverse levels of resistance. The phenotypic variation cannot be explained by variation in catalytic efficiency alone; rather, it is the combination of the catalytic efficiency and abundance of functional periplasmic enzyme that best predicts the observed variation in resistance. The level of functional periplasmic expression varied dramatically between MBL orthologs. This was the result of changes at multiple levels of each ortholog's: (1) quantity of mRNA, (2) amount of MBL expressed, and (3) efficacy of functional enzyme translocation to the periplasm. Overall, it is the interaction between each gene and the host's underlying cellular processes (transcription, translation, and translocation) that determines MBL genetic incompatibility through horizontal gene transfer. These host-specific processes may constrain the effective spread and deployment of MBLs to certain host species and could explain the current observed distribution bias.
Collapse
Affiliation(s)
- Raymond D Socha
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
12
|
Abboud MI, Kosmopoulou M, Krismanich AP, Johnson JW, Hinchliffe P, Brem J, Claridge TDW, Spencer J, Schofield CJ, Dmitrienko GI. Cyclobutanone Mimics of Intermediates in Metallo-β-Lactamase Catalysis. Chemistry 2018; 24:5734-5737. [PMID: 29250863 PMCID: PMC5947706 DOI: 10.1002/chem.201705886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 01/25/2023]
Abstract
The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine and the metallo-β-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19 F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13 C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all β-lactamase classes.
Collapse
Affiliation(s)
- Martine I. Abboud
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Magda Kosmopoulou
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Anthony P. Krismanich
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Jarrod W. Johnson
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| | - Philip Hinchliffe
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | - Jürgen Brem
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - James Spencer
- School of Cellular and Molecular MedicineUniversity of Bristol, Medical Sciences BuildingBristolBS8 1TDUK
| | | | - Gary I. Dmitrienko
- Department of ChemistryUniversity of Waterloo200 University Ave. W.Waterloo, OntarioN2L 3G1Canada
| |
Collapse
|
13
|
Shaping Substrate Selectivity in a Broad-Spectrum Metallo-β-Lactamase. Antimicrob Agents Chemother 2018; 62:AAC.02079-17. [PMID: 29358299 DOI: 10.1128/aac.02079-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/18/2018] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are the major group of carbapenemases produced by bacterial pathogens. The design of MBL inhibitors has been limited by, among other issues, incomplete knowledge about how these enzymes modulate substrate recognition. While most MBLs are broad-spectrum enzymes, B2 MBLs are exclusive carbapenemases. This narrower substrate profile has been attributed to a sequence insertion present in B2 enzymes that limits accessibility to the active site. In this work, we evaluate the role of sequence insertions naturally occurring in the B2 enzyme Sfh-I and in the broad-spectrum B1 enzyme SPM-1. We engineered a chimeric protein in which the sequence insertion of SPM-1 was replaced by the one present in Sfh-I. The chimeric variant is a selective cephalosporinase, revealing that the substrate profile of MBLs can be further tuned depending on the protein context. These results also show that the stable scaffold of MBLs allows a modular engineering much richer than the one observed in nature.
Collapse
|
14
|
Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) Optimizes Resistance under Zn(II) Deprivation. Antimicrob Agents Chemother 2017; 62:AAC.01849-17. [PMID: 29038264 DOI: 10.1128/aac.01849-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent β-lactamases, known as metallo-β-lactamases (MBLs). Among them, the New Delhi metallo-β-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity in vivo, overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.
Collapse
|
15
|
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8:538. [PMID: 28912448 PMCID: PMC5599593 DOI: 10.1038/s41467-017-00601-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MβLs. This common mechanism open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound differences between these enzymes’ active site structure, β-lactam specificity and metal content. Carbapenem-resistant bacteria pose a major health threat by expressing metallo-β-lactamases (MβLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MβLs share the same reaction mechanism, suggesting new strategies for drug design.
Collapse
|
16
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
17
|
Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1 H -pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur J Med Chem 2017; 137:351-364. [DOI: 10.1016/j.ejmech.2017.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/16/2017] [Accepted: 05/31/2017] [Indexed: 11/18/2022]
|
18
|
Abstract
The global overuse of antibiotics has led to the emergence of drug-resistant pathogenic bacteria. Bacteria can combat β-lactams by expressing β-lactamases. Inhibitors of one class of β-lactamase, the serine-β-lactamases, are used clinically to prevent degradation of β-lactam antibiotics. However, a second class of β-lactamase, the metallo-β-lactamases (MBLs), function by a different mechanism to serine-β-lactamases and no inhibitors of MBLs have progressed to be used in the clinic. Bacteria that express MBLs are an increasingly important threat to human health. This review outlines various approaches taken to discover MBL inhibitors, with an emphasis on the different chemical classes of inhibitors. Recent progress, particularly new screening methods and the rational design of potent MBL inhibitors are discussed.
Collapse
|
19
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19
F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martine I. Abboud
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | - Jürgen Brem
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Robert Macsics
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Inga Pfeffer
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anne Makena
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Klaus-Daniel Umland
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Anna M. Rydzik
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - Guo-Bo Li
- Department of Chemistry; University of Oxford; 12 Mansfield Road OX1 3TA Oxford UK
| | - James Spencer
- School of Cellular and Molecular Medicine; University of Bristol; Bristol UK
| | | | | |
Collapse
|
20
|
Abboud MI, Hinchliffe P, Brem J, Macsics R, Pfeffer I, Makena A, Umland KD, Rydzik AM, Li GB, Spencer J, Claridge TDW, Schofield CJ. 19 F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase. Angew Chem Int Ed Engl 2017; 56:3862-3866. [PMID: 28252254 PMCID: PMC5396265 DOI: 10.1002/anie.201612185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/16/2016] [Indexed: 01/19/2023]
Abstract
Resistance to β‐lactam antibiotics mediated by metallo‐β‐lactamases (MBLs) is a growing problem. We describe the use of protein‐observe 19F‐NMR (PrOF NMR) to study the dynamics of the São Paulo MBL (SPM‐1) from β‐lactam‐resistant Pseudomonas aeruginosa. Cysteinyl variants on the α3 and L3 regions, which flank the di‐ZnII active site, were selectively 19F‐labeled using 3‐bromo‐1,1,1‐trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in the binding of both inhibitors and hydrolyzed β‐lactam products to SPM‐1. These results have implications for the mechanisms and inhibition of MBLs by β‐lactams and non‐β‐lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers.
Collapse
Affiliation(s)
- Martine I Abboud
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Robert Macsics
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anne Makena
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Klaus-Daniel Umland
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anna M Rydzik
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Guo-Bo Li
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | | |
Collapse
|
21
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
22
|
Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Antimicrob Agents Chemother 2016; 60:6013-22. [PMID: 27458232 DOI: 10.1128/aac.01067-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.
Collapse
|
23
|
González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516-22. [PMID: 27182662 PMCID: PMC4912412 DOI: 10.1038/nchembio.2083] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Departments of Medicine, Pharmacology, Microbiology and Molecular Biology, and Biochemistry; Case Western Reserve University, Cleveland, OH, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
24
|
Jácome PRLDA, Alves LR, Jácome-Júnior AT, Silva MJBD, Lima JLDC, Araújo PSR, Lopes ACS, Maciel MAV. Detection of bla
SPM-1, bla
KPC, bla
TEM and bla
CTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol 2016; 65:658-665. [DOI: 10.1099/jmm.0.000280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paula Regina Luna de Araújo Jácome
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
| | - Lílian Rodrigues Alves
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
| | - Agenor Tavares Jácome-Júnior
- Faculdade ASCES – Laboratório de Microbiologia, Bromatologia e Análise de Água, Av. Portugal, 584 – Bairro Universitario, Caruaru-PE 55016-400, Brazil
| | - Maria Jesuíta Bezerra da Silva
- Centro Integrado de Análises Clínicas, Avenida Norte Miguel Arraes de Alencar, 2535 – Encruzilhada, Recife – PE 52041-080, Brazil
| | - Jailton Lobo da Costa Lima
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
| | - Paulo Sérgio Ramos Araújo
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
- Fundação Oswaldo Cruz (Fiocruz) – Centro de Pesquisa Aggeu Magalhães, Av. Moraes Rego, s/n – Cidade Universitária, Recife-PE 50670-420, Brazil
| | - Ana Catarina S. Lopes
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
| | - Maria Amélia Vieira Maciel
- Universidade Federal de Pernambuco – Departamento de Medicina Tropical – Programa de Pós- Graduação em Medicina Tropical, Av. Moraes Rego, 1235 – Cidade Universitária, Recife-PE 50670-901, Brazil
| |
Collapse
|
25
|
Meini MR, Llarrull LI, Vila AJ. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics (Basel) 2016; 3:285-316. [PMID: 25364574 PMCID: PMC4212336 DOI: 10.3390/antibiotics3030285] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.
Collapse
Affiliation(s)
- María-Rocío Meini
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Leticia I. Llarrull
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Alejandro J. Vila
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| |
Collapse
|
26
|
Role of Residues W228 and Y233 in the Structure and Activity of Metallo-β-Lactamase GIM-1. Antimicrob Agents Chemother 2015; 60:990-1002. [PMID: 26643332 DOI: 10.1128/aac.02017-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze virtually all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems. The worldwide emergence of antibiotic-resistant bacteria harboring MBLs poses an increasing clinical threat. The MBL German imipenemase-1 (GIM-1) possesses an active site that is narrower and more hydrophobic than the active sites of other MBLs. The GIM-1 active-site groove is shaped by the presence of the aromatic side chains of tryptophan at residue 228 and tyrosine at residue 233, positions where other MBLs harbor hydrophilic residues. To investigate the importance of these two residues, eight site-directed mutants of GIM-1, W228R/A/Y/S and Y233N/A/I/S, were generated and characterized using enzyme kinetics, thermostability assays, and determination of the MICs of representative β-lactams. The structures of selected mutants were obtained by X-ray crystallography, and their interactions with β-lactam substrates were modeled in silico. Steady-state kinetics revealed that both positions are important to GIM-1 activity but that the effects of individual mutations vary depending on the β-lactam substrate. Activity against type 1 substrates bearing electron-donating C-3/C-4 substituents (cefoxitin, meropenem) could be enhanced by mutations at position 228, whereas hydrolysis of type 2 substrates (benzylpenicillin, ampicillin, ceftazidime, imipenem) with methyl or positively charged substituents was favored by mutations at position 233. The crystal structures showed that mutations at position 228 or the Y233A variant alters the conformation of GIM-1 loop L1 rather than that of loop L3, on which the mutations are located. Taken together, these data show that point mutations at both positions 228 and 233 can influence the catalytic properties and the structure of GIM-1.
Collapse
|
27
|
Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Biochemistry 2015; 54:3183-96. [PMID: 25915520 DOI: 10.1021/acs.biochem.5b00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Lactamase inhibitors (BLIs) restore the efficacy of otherwise obsolete β-lactams. However, commercially available BLIs are not effective against metallo-β-lactamases (MBLs), which continue to be disseminated globally. One group of the most clinically important MBLs is the VIM family. The discovery of VIM-24, a natural variant of VIM-2, possessing an R228L substitution and a novel phenotype, compelled us to explore the role of this position and its effects on substrate specificity. We employed mutagenesis, biochemical and biophysical assays, and crystallography. VIM-24 (R228L) confers enhanced resistance to cephems and increases the rate of turnover compared to that of VIM-2 (kcat/KM increased by 6- and 10-fold for ceftazidime and cefepime, respectively). Likely the R → L substitution relieves steric clashes and accommodates the C3N-methyl pyrrolidine group of cephems. Four novel bisthiazolidine (BTZ) inhibitors were next synthesized and tested against these MBLs. These inhibitors inactivated VIM-2 and VIM-24 equally well (Ki* values of 40-640 nM) through a two-step process in which an initial enzyme (E)-inhibitor (I) complex (EI) undergoes a conformational transition to a more stable species, E*I. As both VIM-2 and VIM-24 were inhibited in a similar manner, the crystal structure of a VIM-2-BTZ complex was determined at 1.25 Å and revealed interactions of the inhibitor thiol with the VIM Zn center. Most importantly, BTZs also restored the activity of imipenem against Klebsiella pneumoniae and Pseudomonas aeruginosa in whole cell assays producing VIM-24 and VIM-2, respectively. Our results suggest a role for position 228 in defining the substrate specificity of VIM MBLs and show that BTZ inhibitors are not affected by the R228L substitution.
Collapse
Affiliation(s)
- Maria F Mojica
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - S Graciela Mahler
- ⊥Laboratorio de Química Farmacéutica, Universidad de la República, Montevideo, Uruguay
| | - Christopher R Bethel
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magda Kosmopoulou
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Krisztina M Papp-Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Leticia I Llarrull
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Brigid M Wilson
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Christopher J Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Maria V Villegas
- ∇Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia
| | | | - Alejandro J Vila
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - James Spencer
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Meini MR, Tomatis PE, Weinreich DM, Vila AJ. Quantitative Description of a Protein Fitness Landscape Based on Molecular Features. Mol Biol Evol 2015; 32:1774-87. [PMID: 25767204 DOI: 10.1093/molbev/msv059] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-β-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters.
Collapse
Affiliation(s)
- María-Rocío Meini
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo E Tomatis
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown University
| | - Alejandro J Vila
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
29
|
How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS One 2015; 10:e0118684. [PMID: 25706742 PMCID: PMC4338278 DOI: 10.1371/journal.pone.0118684] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/21/2015] [Indexed: 01/14/2023] Open
Abstract
The need for interfacing structural biology and biophysics to molecular evolution is being increasingly recognized. One part of the big problem is to understand how physics and chemistry shape the sequence space available to functional proteins, while satisfying the needs of biology. Here we present a quantitative, structure-based analysis of a high-resolution map describing the tolerance to all substitutions in all positions of a functional enzyme, namely a TEM lactamase previously studied through deep sequencing of mutants growing in competition experiments with selection against ampicillin. Substitutions are rarely observed within 7 Å of the active site, a stringency that is relaxed slowly and extends up to 15–20 Å, with buried residues being especially sensitive. Substitution patterns in over one third of the residues can be quantitatively modeled by monotonic dependencies on amino acid descriptors and predictions of changes in folding stability. Amino acid volume and steric hindrance shape constraints on the protein core; hydrophobicity and solubility shape constraints on hydrophobic clusters underneath the surface, and on salt bridges and polar networks at the protein surface together with charge and hydrogen bonding capacity. Amino acid solubility, flexibility and conformational descriptors also provide additional constraints at many locations. These findings provide fundamental insights into the chemistry underlying protein evolution and design, by quantitating links between sequence and different protein traits, illuminating subtle and unexpected sequence-trait relationships and pinpointing what traits are sacrificed upon gain-of-function mutation.
Collapse
|