1
|
Wu Y, Sun A, Yang Q, Wang M, Tian B, Yang Q, Jia R, Chen S, Ou X, Huang J, Sun D, Zhu D, Liu M, Zhang S, Zhao XX, He Y, Wu Z, Cheng A. An alpha-herpesvirus employs host HEXIM1 to promote viral transcription. J Virol 2024; 98:e0139223. [PMID: 38363111 PMCID: PMC10949456 DOI: 10.1128/jvi.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anyang Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiqi Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xin-Xin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
2
|
Dremel SE, Didychuk AL. Better late than never: A unique strategy for late gene transcription in the beta- and gammaherpesviruses. Semin Cell Dev Biol 2023; 146:57-69. [PMID: 36535877 PMCID: PMC10101908 DOI: 10.1016/j.semcdb.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
During lytic replication, herpesviruses express their genes in a temporal cascade culminating in expression of "late" genes. Two subfamilies of herpesviruses, the beta- and gammaherpesviruses (including human herpesviruses cytomegalovirus, Epstein-Barr virus, and Kaposi's sarcoma-associated herpesvirus), use a unique strategy to facilitate transcription of late genes. They encode six essential viral transcriptional activators (vTAs) that form a complex at a subset of late gene promoters. One of these vTAs is a viral mimic of host TATA-binding protein (vTBP) that recognizes a strikingly minimal cis-acting element consisting of a modified TATA box with a TATTWAA consensus sequence. vTBP is also responsible for recruitment of cellular RNA polymerase II (Pol II). Despite extensive work in the beta/gammaherpesviruses, the function of the other five vTAs remains largely unknown. The vTA complex and Pol II assemble on the promoter into a viral preinitiation complex (vPIC) to facilitate late gene transcription. Here, we review the properties of the vTAs and the promoters on which they act.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison L Didychuk
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
McCollum CO, Didychuk AL, Liu D, Murray-Nerger LA, Cristea IM, Glaunsinger BA. The viral packaging motor potentiates Kaposi's sarcoma-associated herpesvirus gene expression late in infection. PLoS Pathog 2023; 19:e1011163. [PMID: 37068108 PMCID: PMC10138851 DOI: 10.1371/journal.ppat.1011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
β- and γ-herpesviruses transcribe their late genes in a manner distinct from host transcription. This process is directed by a complex of viral transcriptional activator proteins that hijack cellular RNA polymerase II and an unknown set of additional factors. We employed proximity labeling coupled with mass spectrometry, followed by CRISPR and siRNA screening to identify proteins functionally associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) late gene transcriptional complex. These data revealed that the catalytic subunit of the viral DNA packaging motor, ORF29, is both dynamically associated with the viral transcriptional activator complex and potentiates gene expression late in infection. Through genetic mutation and deletion of ORF29, we establish that its catalytic activity potentiates viral transcription and is required for robust accumulation of essential late proteins during infection. Thus, we propose an expanded role for ORF29 that encompasses its established function in viral packaging and its newly discovered contributions to viral transcription and late gene expression in KSHV.
Collapse
Affiliation(s)
- Chloe O. McCollum
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Laura A. Murray-Nerger
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
4
|
Forte E, Li M, Ayaloglu Butun F, Hu Q, Borst EM, Schipma MJ, Piunti A, Shilatifard A, Terhune SS, Abecassis M, Meier JL, Hummel M. Critical Role for the Human Cytomegalovirus Major Immediate Early Proteins in Recruitment of RNA Polymerase II and H3K27Ac To an Enhancer-Like Element in Ori Lyt. Microbiol Spectr 2023; 11:e0314422. [PMID: 36645269 PMCID: PMC9927211 DOI: 10.1128/spectrum.03144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac. Although it is well known that the major immediate early (IE) proteins activate early gene expression through both direct and indirect interactions, and that histone modifications play an important role in regulating viral gene expression, the role of the IE proteins in modulating viral chromatin is not fully understood. To address this question, we have used a virus engineered for conditional expression of the IE proteins combined with RNA and Chromatin immunoprecipitation (ChIP) analyses to assess the role of these proteins in modulating both viral chromatin and gene expression. Our results show that (i) there is an enhancer-like element in OriLyt that is extraordinarily enriched in H3K27Ac; (ii) in addition to activation of viral gene expression, the IE proteins play a critical role in recruitment of Pol II and H3K27Ac to this element. IMPORTANCE HCMV is an important human pathogen associated with complications in transplant patients and birth defects. The complex program of viral gene expression is regulated by both viral proteins and host factors. Here, we have investigated the role of the immediate early proteins in regulating the viral epigenome. Our results show that the viral immediate early proteins bring about an enormous enrichment of H3K27Ac marks at the OriLyt RNA4.9 promoter, concomitant with an increase in RNA4.9 expression. This epigenetic characteristic adds importantly to the view that OriLyt has structural and functional characteristics of a strong enhancer that, we now discover, is regulated by IE proteins.
Collapse
Affiliation(s)
- Eleonora Forte
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Fatma Ayaloglu Butun
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Schipma
- NUSeq Core, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Mary Hummel
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Turner DL, Fritzlar S, Sadeghipour S, Barugahare AA, Russ BE, Turner SJ, Mathias RA. UL49 is an essential subunit of the viral pre-initiation complex that regulates human cytomegalovirus gene transcription. iScience 2022; 25:105168. [PMID: 36204275 PMCID: PMC9530030 DOI: 10.1016/j.isci.2022.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022] Open
Abstract
More than half the world’s population is infected with human cytomegalovirus (HCMV), causing congenital birth defects and impacting the immuno-compromised. Many of the >170 HCMV genes remain uncharacterized, and this gap in knowledge limits the development of novel antivirals. In this study, we investigated the essential viral protein UL49 and found it displayed leaky late expression kinetics, and localized to nuclear replication compartments. Cells infected with mutant UL49 virus were unable to produce infectious virions and phenocopied other beta-gamma viral pre-initiation complex (vPIC) subunit (UL79, UL87, UL91, UL92, and UL95) mutant infections. RNA-seq analysis of vPIC mutant infections revealed a consistent diminution of genes encoding capsid subunits, including TRX2/UL85 and MCP/UL86, envelope glycoproteins gM, gL and gO, and egress-associated tegument proteins UL99 and UL103. Therefore, as a member of the vPIC, UL49 serves as a fundamental HCMV effector that governs viral gene transcription required to complete the replication cycle. Beta- and gamma-herpes viruses encode a viral pre-initiation complex (vPIC) UL49, together with UL79, UL87, UL91, UL92, and UL95 Comprise the HCMV vPIC UL49 is essential for HCMV replication and orchestrates late viral gene expression Mutation of vPIC subunits reduces the transcription of structural virion components
Collapse
|
6
|
Maeda Y, Watanabe T, Izumi T, Kuriyama K, Ohno S, Fujimuro M. Biomolecular Fluorescence Complementation Profiling and Artificial Intelligence Structure Prediction of the Kaposi's Sarcoma-Associated Herpesvirus ORF18 and ORF30 Interaction. Int J Mol Sci 2022; 23:9647. [PMID: 36077046 PMCID: PMC9456320 DOI: 10.3390/ijms23179647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.
Collapse
Affiliation(s)
- Yoshiko Maeda
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Taisuke Izumi
- Department of Biology, Saint Joseph’s University, Philadelphia, PA 19104, USA
| | - Kazushi Kuriyama
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Shinji Ohno
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
7
|
Huang Y, Guo X, Zhang J, Li J, Xu M, Wang Q, Liu Z, Ma Y, Qi Y, Ruan Q. Human cytomegalovirus RNA2.7 inhibits RNA polymerase II (Pol II) Serine-2 phosphorylation by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Virol Sin 2022; 37:358-369. [PMID: 35537980 PMCID: PMC9243627 DOI: 10.1016/j.virs.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen belongs to betaherpesvirus subfamily. RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20% of total viral transcripts. In our study, functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant. It was demonstrated that RNA polymerase II (Pol II)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection. A 145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of Pol II Serine-2 (Pol II S2) by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Due to the loss of Pol II S2 phosphorylation, cellular DNA pre-replication complex (pre-RC) factors, including Cdt1 and Cdc6, were significantly decreased, which prevented more cells from entering into S phase and facilitated viral DNA replication. Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription. HCMV RNA2.7 inhibits the phosphorylation of Pol II Serine-2. RNA2.7 reduces the interactions between Pol II and pCDK9. RNA2.7 regulates cell cycle by preventing cells from entering into S phase.
Collapse
Affiliation(s)
- Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110033, China
| | - Jing Zhang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Wang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Morgens DW, Nandakumar D, Didychuk AL, Yang KJ, Glaunsinger BA. A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains. PLoS Pathog 2022; 18:e1010236. [PMID: 35041709 PMCID: PMC8797222 DOI: 10.1371/journal.ppat.1010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 12/29/2021] [Indexed: 11/19/2022] Open
Abstract
While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi’s sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
| | - Kevin J. Yang
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, UC Berkeley, Berkeley, California, United States of America
- * E-mail: (DM); (BG)
| |
Collapse
|
9
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
10
|
Li M, Hu Q, Collins G, Parida M, Ball CB, Price DH, Meier JL. Cytomegalovirus late transcription factor target sequence diversity orchestrates viral early to late transcription. PLoS Pathog 2021; 17:e1009796. [PMID: 34339482 PMCID: PMC8360532 DOI: 10.1371/journal.ppat.1009796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Beta- and gammaherpesviruses late transcription factors (LTFs) target viral promoters containing a TATT sequence to drive transcription after viral DNA replication has begun. Human cytomegalovirus (HCMV), a betaherpesvirus, uses the UL87 LTF to bind both TATT and host RNA polymerase II (Pol II), whereas the UL79 LTF has been suggested to drive productive elongation. Here we apply integrated functional genomics (dTag system, PRO-Seq, ChIP-Seq, and promoter function assays) to uncover the contribution of diversity in LTF target sequences in determining degree and scope to which LTFs drive viral transcription. We characterize the DNA sequence patterns in LTF-responsive and -unresponsive promoter populations, determine where and when Pol II initiates transcription, identify sites of LTF binding genome-wide, and quantify change in nascent transcripts from individual promoters in relation to core promoter sequences, LTF loss, stage of infection, and viral DNA replication. We find that HCMV UL79 and UL87 LTFs function concordantly to initiate transcription from over half of all active viral promoters in late infection, while not appreciably affecting host transcription. Both LTFs act on and bind to viral early-late and late kinetic-class promoters. Over one-third of these core promoters lack the TATT and instead have a TATAT, TGTT, or YRYT. The TATT and non-TATT motifs are part of a sequence block with a sequence code that correlates with promoter transcription level. LTF occupancy of a TATATA palindrome shared by back-to-back promoters is linked to bidirectional transcription. We conclude that diversity in LTF target sequences shapes the LTF-transformative program that drives the viral early-to-late transcription switch. Herpesviruses have a group of genes earmarked for expression late in the infection. Beta- and gammaherpesviruses utilize a six-member set of viral late transcription factors to selectively activate these genes by binding to a DNA sequence signature in gene promoters. We made an unexpected discovery that a wider range of differences in sequence signatures configures the late gene expression program for human cytomegalovirus, a beta-herpesvirus of global public health importance. Diversity in signature patterns expands promoter targets and probably pre-sets amount of individual promoter output. A unique palindromic sequence signature is linked to the activation of back-to-back promoters at multiple locations in the viral genome. We deduce that diversity in late transcription factor targets functionally orchestrates the rollout of a productive late-stage infection. This may be a generalizable feature adopted by beta- and gammaherpesvirus subfamilies.
Collapse
Affiliation(s)
- Ming Li
- Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Internal Medicine University of Iowa, Iowa City, Iowa, United States of America
| | - Qiaolin Hu
- Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Internal Medicine University of Iowa, Iowa City, Iowa, United States of America
| | - Geoffrey Collins
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Mrutyunjaya Parida
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher B. Ball
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - David H. Price
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffery L. Meier
- Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Internal Medicine University of Iowa, Iowa City, Iowa, United States of America
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
Targeting Conserved Sequences Circumvents the Evolution of Resistance in a Viral Gene Drive against Human Cytomegalovirus. J Virol 2021; 95:e0080221. [PMID: 34011551 DOI: 10.1128/jvi.00802-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene drives are genetic systems designed to efficiently spread a modification through a population. They have been designed almost exclusively in eukaryotic species, especially in insects. We recently developed a CRISPR-based gene drive system in herpesviruses that relies on similar mechanisms and could efficiently spread into a population of wild-type viruses. A common consequence of gene drives in insects is the appearance and selection of drive-resistant sequences that are no longer recognized by CRISPR-Cas9. In this study, we analyzed in cell culture experiments the evolution of resistance in a viral gene drive against human cytomegalovirus. We report that after an initial invasion of the wild-type population, a drive-resistant population is positively selected over time and outcompetes gene drive viruses. However, we show that targeting evolutionarily conserved sequences ensures that drive-resistant viruses acquire long-lasting mutations and are durably attenuated. As a consequence, and even though engineered viruses do not stably persist in the viral population, remaining viruses have a replication defect, leading to a long-term reduction of viral levels. This marks an important step toward developing effective gene drives in herpesviruses, especially for therapeutic applications. IMPORTANCE The use of defective viruses that interfere with the replication of their infectious parent after coinfecting the same cells-a therapeutic strategy known as viral interference-has recently generated a lot of interest. The CRISPR-based system that we recently reported for herpesviruses represents a novel interfering strategy that causes the conversion of wild-type viruses into new recombinant viruses and drives the native viral population to extinction. In this study, we analyzed how targeted viruses evolved resistance against the technology. Through numerical simulations and cell culture experiments with human cytomegalovirus, we showed that after the initial propagation, a resistant viral population is positively selected and outcompetes engineered viruses over time. We show, however, that targeting evolutionarily conserved sequences ensures that resistant viruses are mutated and attenuated, which leads to a long-term reduction of viral levels. This marks an important step toward the development of novel therapeutic strategies against herpesviruses.
Collapse
|
12
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
13
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
14
|
Chen WD, Song T, Cao QH, Li R, Wang H, Chen XB, Chen ZT. Atherosclerosis prediction by microarray-based DNA methylation analysis. Exp Ther Med 2020; 20:2863-2869. [PMID: 32765783 DOI: 10.3892/etm.2020.9025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/29/2020] [Indexed: 12/23/2022] Open
Abstract
Using a series of DNA methylation analysis, pathogenesis was investigated to identify the specific DNA methylation markers for diagnosing atherosclerosis. Firstly, with the chip platform of Illumina Human Methylation 450 BeadChip, a total of 1,458 CpGs, covering 971 differential methylated genes were extracted with stringent filtering criteria. Secondly, hierarchical clustering as a heat map was used to check on the dependability of differential methylated genes. Thirdly, the related GO terms and pathways were enriched by up- and down-methylated genes, respectively, after verifying the capacity of these differential methylated genes to distinguish between atherosclerosis and healthy controls. In total, 971 differential DNA methylated genes were identified (1,458 CpGs). Several important function regions were also identified, including cell adhesion, PI3K-Akt signaling pathway and transcription from RNA polymerase II promoter. This study indicates that patients with atherosclerosis have high levels of DNA methylation, which is promising for early diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei-da Chen
- Health Care Department, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ting Song
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Qiu-Hong Cao
- Department of Anesthesiology, Jinan Center Hospital, Jinan, Shandong 250013, P.R. China
| | - Rui Li
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Hua Wang
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Xiu-Bao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Ze-Tao Chen
- Health Care Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
15
|
Inhibition of the Super Elongation Complex Suppresses Herpes Simplex Virus Immediate Early Gene Expression, Lytic Infection, and Reactivation from Latency. mBio 2020; 11:mBio.01216-20. [PMID: 32518191 PMCID: PMC7373197 DOI: 10.1128/mbio.01216-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HSV infections can cause pathologies ranging from recurrent lesions to significant ocular disease. Initiation of lytic infection and reactivation from latency in sensory neurons are dependent on the induced expression of the viral immediate early genes. Transcription of these genes is controlled at multiple levels, including modulation of the chromatin state of the viral genome and appropriate recruitment of transcription factors and coactivators. Following initiation of transcription, IE genes are subject to a key regulatory stage in which transcriptional elongation rates are controlled by the activity of the super elongation complex. Inhibition of the SEC blocks both lytic infection and reactivation from latency in sensory neurons. In addition to providing insights into the mechanisms controlling viral infection and reactivation, inhibitors of critical components such as the SEC may represent novel antivirals. Induction of herpes simplex virus (HSV) immediate early (IE) gene transcription promotes the initiation of lytic infection and reactivation from latency in sensory neurons. IE genes are transcribed by the cellular RNA polymerase II (RNAPII) and regulated by multiple transcription factors and coactivators. The HCF-1 cellular coactivator plays a central role in driving IE expression at multiple stages through interactions with transcription factors, chromatin modulation complexes, and transcription elongation components, including the active super elongation complex/P-TEFb (SEC-P-TEFb). Here, we demonstrate that the SEC occupies the promoters of HSV IE genes during the initiation of lytic infection and during reactivation from latency. Specific inhibitors of the SEC suppress viral IE expression and block the spread of HSV infection. Significantly, these inhibitors also block the initiation of viral reactivation from latency in sensory ganglia. The potent suppression of IE gene expression by SEC inhibitors indicates that transcriptional elongation represents a determining rate-limiting stage in HSV IE gene transcription and that the SEC plays a critical role in driving productive elongation during both phases of the viral life cycle. Most importantly, this supports the model that signal-mediated induction of SEC-P-TEFb levels can promote reactivation of a population of poised latent genomes.
Collapse
|
16
|
Murine Cytomegalovirus Protein pM49 Interacts with pM95 and Is Critical for Viral Late Gene Expression. J Virol 2020; 94:JVI.01956-19. [PMID: 31896598 DOI: 10.1128/jvi.01956-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Late gene expression of betaherpesviruses and gammaherpesviruses is tightly controlled by virus-encoded transactivation factors (vTFs). We recently proved that the 6 vTFs of murine cytomegalovirus (MCMV) form a complex to regulate late gene transcription. pM49, one of the vTFs that has not been studied before, was identified to be a component of the complex that interacts with pM95. In this study, we began to investigate the potential role of pM49 in viral late gene expression. A recombinant MCMV expressing C-terminal FLAG-tagged pM49 was constructed to study the expression kinetics and localization of pM49. pM49 was expressed at the late time of virus infection. Inhibition of viral DNA synthesis by phosphonate sodium phosphonic acid (PAA) abolished pM49 expression, indicating that it is a late protein. pM49 colocalized with pM44 at the viral replication compartment, similarly to other viral vTFs that have been reported. Mutant virus lacking full-length pM49 expression failed to express viral late genes, leading to nonproductive infection. The expression of immediate early and early genes was not affected, and viral DNA synthesis was only minimally affected during pM49-deficient virus infection. All of these data support the role of pM49 in viral late gene expression. After a series of mutagenesis analyses, two key residues, K325 and C326, were identified as required for pM49-pM95 interaction. Cells expressing pM49 with either single mutation of these two residues failed to rescue the late gene expression and support the replication of pM49-deficient virus. Our results indicated that pM49-pM95 interaction is essential for viral late gene expression.IMPORTANCE Cytomegalovirus (CMV) infections result in morbidity and mortality in immunocompromised individuals, and the virus is also a major cause of birth defects in newborns. Currently, because of the unavailability of vaccines against this virus and restricted antiviral therapies with low toxicity, as well as the emergency of resistant strain of this virus, the understanding of viral late gene regulation may provide clues to study new antiviral drugs or vaccines. In this study, we report that MCMV protein pM49 is critical for viral late gene transcription, based on its interaction with pM95. This finding reveals the important role of pM49-pM95 interaction in the regulation of viral late gene expression and that it could be a future potential target for therapeutic intervention in CMV diseases.
Collapse
|
17
|
Li J, Walsh A, Lam TT, Delecluse HJ, El-Guindy A. A single phosphoacceptor residue in BGLF3 is essential for transcription of Epstein-Barr virus late genes. PLoS Pathog 2019; 15:e1007980. [PMID: 31461506 PMCID: PMC6713331 DOI: 10.1371/journal.ppat.1007980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Almost one third of herpesvirus proteins are expressed with late kinetics. Many of these late proteins serve crucial structural functions such as formation of virus particles, attachment to host cells and internalization. Recently, we and others identified a group of Epstein-Barr virus early proteins that form a pre-initiation complex (vPIC) dedicated to transcription of late genes. Currently, there is a fundamental gap in understanding the role of post-translational modifications in regulating assembly and function of the complex. Here, we used mass spectrometry to map potential phosphorylation sites in BGLF3, a core component of the vPIC module that connects the BcRF1 viral TATA box binding protein to other components of the complex. We identified threonine 42 (T42) in BGLF3 as a phosphoacceptor residue. T42 is conserved in BGLF3 orthologs encoded by other gamma herpesviruses. Abolishing phosphorylation at T42 markedly reduced expression of vPIC-dependent late genes and disrupted production of new virus particles, but had no effect on early gene expression, viral DNA replication, or expression of vPIC-independent late genes. We complemented failure of BGLF3(T42A) to activate late gene expression by ectopic expression of other components of vPIC. Only BFRF2 and BVLF1 were sufficient to suppress the defect in late gene expression associated with BGLF3(T42A). These results were corroborated by the ability of wild type BGLF3 but not BGLF3(T42A) to form a trimeric complex with BFRF2 and BVLF1. Our findings suggest that phosphorylation of BGLF3 at threonine 42 serves as a new checkpoint for subsequent formation of BFRF2:BGLF3:BVLF1; a trimeric subcomplex essential for transcription of late genes. Our findings provide evidence that post-translational modifications regulate the function of the vPIC nanomachine that initiates synthesis of late transcripts in herpesviruses.
Collapse
Affiliation(s)
- Jinlin Li
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS and Proteomics Resource, Yale University, New Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
18
|
An integrative approach identifies direct targets of the late viral transcription complex and an expanded promoter recognition motif in Kaposi's sarcoma-associated herpesvirus. PLoS Pathog 2019; 15:e1007774. [PMID: 31095645 PMCID: PMC6541308 DOI: 10.1371/journal.ppat.1007774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/29/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022] Open
Abstract
The structural proteins of DNA viruses are generally encoded by late genes, whose expression relies on recruitment of the host transcriptional machinery only after the onset of viral genome replication. β and γ-herpesviruses encode a unique six-member viral pre-initiation complex (vPIC) for this purpose, although how the vPIC directs specific activation of late genes remains largely unknown. The specificity underlying late transcription is particularly notable given that late gene promoters are unusually small, with a modified TATA-box being the only recognizable element. Here, we explored the basis for this specificity using an integrative approach to evaluate vPIC-dependent gene expression combined with promoter occupancy during Kaposi's sarcoma-associated herpesvirus (KSHV) infection. This approach distinguished the direct and indirect targets of the vPIC, ultimately revealing a novel promoter motif critical for KSHV vPIC binding. Additionally, we found that the KSHV vPIC component ORF24 is required for efficient viral DNA replication and identified a ORF24 binding element in the origin of replication that is necessary for late gene promoter activation. Together, these results identify an elusive element that contributes to vPIC specificity and suggest novel links between KSHV DNA replication and late transcription.
Collapse
|
19
|
The Interaction between ORF18 and ORF30 Is Required for Late Gene Expression in Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2018; 93:JVI.01488-18. [PMID: 30305361 DOI: 10.1128/jvi.01488-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 01/04/2023] Open
Abstract
In the beta- and gammaherpesviruses, a specialized complex of viral transcriptional activators (vTAs) coordinate to direct expression of virus-encoded late genes, which are critical for viral assembly and whose transcription initiates only after the onset of viral DNA replication. The vTAs in Kaposi's sarcoma-associated herpesvirus (KSHV) are ORF18, ORF24, ORF30, ORF31, ORF34, and ORF66. While the general organization of the vTA complex has been mapped, the individual roles of these proteins and how they coordinate to activate late gene promoters remain largely unknown. Here, we performed a comprehensive mutational analysis of the conserved residues in ORF18, which is a highly interconnected vTA component. Surprisingly, the mutants were largely selective for disrupting the interaction with ORF30 but not the other three ORF18 binding partners. Furthermore, disrupting the ORF18-ORF30 interaction weakened the vTA complex as a whole, and an ORF18 point mutant that failed to bind ORF30 was unable to complement an ORF18 null virus. Thus, contacts between individual vTAs are critical as even small disruptions in this complex result in profound defects in KSHV late gene expression.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma and other B-cell cancers and remains a leading cause of death in immunocompromised individuals. A key step in the production of infectious virions is the transcription of viral late genes, which generates capsid and structural proteins and requires the coordination of six viral proteins that form a complex. The role of these proteins during transcription complex formation and the importance of protein-protein interactions are not well understood. Here, we focused on a central component of the complex, ORF18, and revealed that disruption of its interaction with even a single component of the complex (ORF30) prevents late gene expression and completion of the viral lifecycle. These findings underscore how individual interactions between the late gene transcription components are critical for both the stability and function of the complex.
Collapse
|
20
|
Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 2018; 92:JVI.01062-18. [PMID: 30021895 DOI: 10.1128/jvi.01062-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.
Collapse
|
21
|
Murine Cytomegalovirus Protein pM91 Interacts with pM79 and Is Critical for Viral Late Gene Expression. J Virol 2018; 92:JVI.00675-18. [PMID: 29997217 DOI: 10.1128/jvi.00675-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/05/2018] [Indexed: 02/02/2023] Open
Abstract
Viral gene expression is tightly regulated during cytomegalovirus (CMV) lytic replication, but the detailed mechanism of late gene transcription remains to be fully understood. Previous studies reported that six viral proteins (named viral transactivation factors [vTFs]) supporting late gene expression were conserved in beta- and gammaherpesviruses but not in alphaherpesviruses. Here, we performed coimmunoprecipitation experiments to elucidate the organization of these six proteins in murine CMV. Our results showed that these proteins formed a complex by both direct and indirect interactions. Specifically, pM91 strongly bound to pM79 even in the absence of other vTFs. Similar to pM79, pM91 exhibited early-late expression kinetics and localized within nuclear viral replication compartments during infection. Functional analysis was also performed using the pM91-deficient virus. Real-time PCR results revealed that abrogation of M91 expression markedly reduced viral late gene expression and progeny virus production without affecting viral DNA synthesis. Using mutagenesis, we found that residues E61, D62, D89, and D96 in pM91 were required for the pM91-pM79 interaction. Disruption of the interaction via E61A/D62A or D89A/D96A double mutation in the context of virus infection inhibited progeny virus production. Our data indicate that pM91 is a component of the viral late gene transcription factor complex and that the pM91-pM79 interaction is essential for viral late gene expression.IMPORTANCE Cytomegalovirus (CMV) infection is the leading cause of birth defects and causes morbidity and mortality in immunocompromised patients. The regulation of viral late gene transcription is not well elucidated, and understanding of this process benefits the development of novel therapeutics against CMV infection. This study (i) identified that six viral transactivation factors encoded by murine CMV form a complex, (ii) demonstrated that pM91 interacts with pM79 and that pM91 and pM79 colocalize in the nuclear viral replication compartments, (iii) confirmed that pM91 is critical for viral late gene expression but dispensable for viral DNA replication, and (iv) revealed that the pM91-pM79 interaction is required for progeny virus production. These findings give an explanation of how CMV regulates late gene expression and have important implications for the design of antiviral strategies.
Collapse
|
22
|
Siddiqui S, Anwar MF, Naeem S, Abidi SH, Zarina S, Ali S. Simian Virus 40 Large T Antigen as a Model to Test the Efficacy of Flouroquinolones against Viral Helicases. Bioinformation 2018; 14:75-79. [PMID: 29618903 PMCID: PMC5879947 DOI: 10.6026/97320630014075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 12/03/2022] Open
Abstract
Simian virus 40 large T-antigen (SV40 LT-Ag) is a 708 amino acid nuclear phosphoprotein. Among many functions of LT-Ag is its
ability to perform as an ATPase-helicase, catalyzing the unwinding of viral genome during replication. The LT-Ag has been employed
in the studies of helicase structure and function, and has served as a model helicase for the screening of antiviral drugs that target viral
helicase. In this study, using in vitro enzyme assays and in silico computer modeling, we screened a batch of 18 fluoroquinolones to
assess their potential as antivirals by virtue of their inhibition of the LT-Ag helicase. We found all fluoroquinolones to be inhibitory to
the helicase activity of LT-Ag. In our docking analysis, most of these tested drugs showed similarity in their interactions with LT-Ag.
Our study shows the potential of fluoroquinolones as antiviral drugs and of SV40 LT-Ag as a model protein for screening drugs
against viral helicases.
Collapse
Affiliation(s)
- Sammer Siddiqui
- Department of Comparative Pathology, Tulane University, New Orleans, LA, USA
| | - Muhammad F Anwar
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Sadaf Naeem
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Syed Ali
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan.,Department of Biological Sciences, Nazarbayev University School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
23
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
24
|
Chapa TJ, Du Y, Sun R, Yu D, French AR. Proteomic and phylogenetic coevolution analyses of pM79 and pM92 identify interactions with RNA polymerase II and delineate the murine cytomegalovirus late transcription complex. J Gen Virol 2017; 98:242-250. [PMID: 27926822 DOI: 10.1099/jgv.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of the late viral gene expression in betaherpesviruses is largely undefined. We have previously shown that the murine cytomegalovirus proteins pM79 and pM92 are required for late gene transcription. Here, we provide insight into the mechanism of pM79 and pM92 activity by determining their interaction partners during infection. Co-immunoprecipitation-coupled MS studies demonstrate that pM79 and pM92 interact with an array of cellular and viral proteins involved in transcription. Specifically, we identify RNA polymerase II as a cellular target for both pM79 and pM92. We use inter-protein coevolution analysis to show how pM79 and pM92 likely assemble into a late transcription complex composed of late transcription regulators pM49, pM87 and pM95. Combining proteomic methods with coevolution computational analysis provides novel insights into the relationship between pM79, pM92 and RNA polymerase II and allows the generation of a model of the multi-component viral complex that regulates late gene transcription.
Collapse
Affiliation(s)
- Travis J Chapa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dong Yu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
25
|
McKenzie J, Lopez-Giraldez F, Delecluse HJ, Walsh A, El-Guindy A. The Epstein-Barr Virus Immunoevasins BCRF1 and BPLF1 Are Expressed by a Mechanism Independent of the Canonical Late Pre-initiation Complex. PLoS Pathog 2016; 12:e1006008. [PMID: 27855219 PMCID: PMC5113994 DOI: 10.1371/journal.ppat.1006008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Subversion of host immune surveillance is a crucial step in viral pathogenesis. Epstein-Barr virus (EBV) encodes two immune evasion gene products, BCRF1 (viral IL-10) and BPLF1 (deubiquitinase/deneddylase); both proteins suppress antiviral immune responses during primary infection. The BCRF1 and BPLF1 genes are expressed during the late phase of the lytic cycle, an essential but poorly understood phase of viral gene expression. Several late gene regulators recently identified in beta and gamma herpesviruses form a viral pre-initiation complex for transcription. Whether each of these late gene regulators is necessary for transcription of all late genes is not known. Here, studying viral gene expression in the absence and presence of siRNAs to individual components of the viral pre-initiation complex, we identified two distinct groups of late genes. One group includes late genes encoding the two immunoevasins, BCRF1 and BPLF1, and is transcribed independently of the viral pre-initiation complex. The second group primarily encodes viral structural proteins and is dependent on the viral pre-initiation complex. The protein kinase BGLF4 is the only known late gene regulator necessary for expression of both groups of late genes. ChIP-seq analysis showed that the transcription activator Rta associates with the promoters of eight late genes including genes encoding the viral immunoevasins. Our results demonstrate that late genes encoding immunomodulatory proteins are transcribed by a mechanism distinct from late genes encoding viral structural proteins. Understanding the mechanisms that specifically regulate expression of the late immunomodulatory proteins could aid the development of antiviral drugs that impair immune evasion by the oncogenic EB virus. Late proteins are expressed during the productive cycle of Epstein-Barr virus (EBV) after the onset of viral DNA replication. Many late proteins serve structural functions; they form the capsid shell around the viral genome or mediate attachment and fusion of the virus to the host cell. EBV also encodes two late proteins that suppress the immune system during primary infection. The current model suggests that transcription of all late genes is regulated by a common mechanism involving seven late gene regulators. Here, we demonstrate that late genes encoding two viral immune suppressants are transcribed by a mechanism different from that regulating late genes encoding structural proteins. Abolishing expression of the late immunomodulators without disrupting expression of the antigenic viral structural proteins could serve as an approach to block EBV de novo infection and its associated malignancies.
Collapse
Affiliation(s)
- Jessica McKenzie
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis (YCGA), Yale University, West Haven, Connecticut, United States of America
| | - Henri-Jacques Delecluse
- Department of Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Ann Walsh
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ayman El-Guindy
- Department of Pediatrics Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol 2016; 7:869. [PMID: 27375590 PMCID: PMC4893493 DOI: 10.3389/fmicb.2016.00869] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
During their productive cycle, herpesviruses exhibit a strictly regulated temporal cascade of gene expression that can be divided into three general stages: immediate-early (IE), early (E), and late (L). This expression program is the result of a complex interplay between viral and cellular factors at both the transcriptional and post-transcriptional levels, as well as structural differences within the promoter architecture for each of the three gene classes. Since the cellular enzyme RNA polymerase II (RNAP-II) is responsible for the transcription of herpesvirus genes, most viral promoters contain DNA motifs that are common with those of cellular genes, although promoter complexity decreases from immediate-early to late genes. Immediate-early and early promoters contain numerous cellular and viral cis-regulating sequences upstream of a TATA box, whereas late promoters differ significantly in that they lack cis-acting sequences upstream of the transcription start site (TSS). Moreover, in the case of the β- and γ-herpesviruses, a TATT box motif is frequently found in the position where the consensus TATA box of eukaryotic promoters usually localizes. The mechanisms of transcriptional regulation of the late viral gene promoters appear to be different between α-herpesviruses and the two other herpesvirus subfamilies (β and γ). In this review, we will compare the mechanisms of late gene transcriptional regulation between HSV-1, for which the viral IE transcription factors – especially ICP4 – play an essential role, and the two other subfamilies of herpesviruses, with a particular emphasis on EBV, which has recently been found to code for its own specific TATT-binding protein.
Collapse
Affiliation(s)
- Henri Gruffat
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Roberta Marchione
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| | - Evelyne Manet
- International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, LyonFrance; Inserm, U1111, LyonFrance.; Ecole Normale Supérieure de Lyon, LyonFrance; CNRS, UMR5308, LyonFrance; Université Lyon 1, LyonFrance
| |
Collapse
|
27
|
Interaction between ORF24 and ORF34 in the Kaposi's Sarcoma-Associated Herpesvirus Late Gene Transcription Factor Complex Is Essential for Viral Late Gene Expression. J Virol 2015; 90:599-604. [PMID: 26468530 DOI: 10.1128/jvi.02157-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription of herpesviral late genes is stimulated after the onset of viral DNA replication but otherwise restricted. Late gene expression in gammaherpesviruses requires the coordination of six early viral proteins, termed viral transactivation factors (vTFs). Here, we mapped the organization of this protein complex for Kaposi's sarcoma-associated herpesvirus. Disruption of this complex via point mutation of the interaction interface between the open reading frame 24 (ORF24) and ORF34 vTFs ablated both late gene expression and viral replication.
Collapse
|
28
|
The Epstein-Barr Virus BDLF4 Gene Is Required for Efficient Expression of Viral Late Lytic Genes. J Virol 2015. [PMID: 26202235 DOI: 10.1128/jvi.01604-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a gammaherpesvirus, associated with infectious mononucleosis and various types of malignancy. We focused here on the BDLF4 gene of EBV and identified it as a lytic gene, expressed with early kinetics. Viral late gene expression of the BDLF4 knockout strain was severely restricted; this could be restored by an exogenous supply of BDLF4. These results indicate that BDLF4 is important for the EBV lytic replication cycle, especially in late gene expression.
Collapse
|
29
|
Proteomics methods for discovering viral-host interactions. Methods 2015; 90:21-7. [PMID: 25959231 DOI: 10.1016/j.ymeth.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
The functions of many viral proteins involve direct interactions with specific host proteins. Therefore considerable insight into the functions of a viral protein and its mechanisms of action can come from applying proteomics approaches to viral proteins in order to identify their cellular binding partners. In this chapter we describe proteomics approaches that have proven to be the most useful in identifying host interactions of viral proteins in human cells. Caveats and potential alternatives for each step are also discussed.
Collapse
|
30
|
Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR, Park J, Von Dollen J, Maher MC, Johnson T, Newton W, Jäger S, Shales M, Horner J, Hernandez RD, Krogan NJ, Glaunsinger BA. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 2015; 57:349-60. [PMID: 25544563 PMCID: PMC4305015 DOI: 10.1016/j.molcel.2014.11.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/20/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022]
Abstract
Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.
Collapse
Affiliation(s)
- Zoe H Davis
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Verschueren
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn M Jang
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin Kleffman
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jimin Park
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Von Dollen
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Cyrus Maher
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William Newton
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julie Horner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Ryan D Hernandez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Britt A Glaunsinger
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|