1
|
Huang J, Zhao Y, Liu S, Chen Y, Du M, Wang Q, Zhang J, Yang X, Chen J, Zhang X. RH20, a phase-separated RNA helicase protein, facilitates plant resistance to viruses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112176. [PMID: 38971466 DOI: 10.1016/j.plantsci.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianguang Yang
- Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
2
|
Gonzalez PA, Nagy PD. The centromeric histone CenH3 is recruited into the tombusvirus replication organelles. PLoS Pathog 2022; 18:e1010653. [PMID: 35767596 PMCID: PMC9275711 DOI: 10.1371/journal.ppat.1010653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/12/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.
Collapse
Affiliation(s)
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
3
|
Feng Z, Kovalev N, Nagy PD. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathog 2020; 16:e1009120. [PMID: 33370420 PMCID: PMC7833164 DOI: 10.1371/journal.ppat.1009120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/25/2021] [Accepted: 10/31/2020] [Indexed: 12/27/2022] Open
Abstract
Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.
Collapse
Affiliation(s)
- Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
4
|
Wu CY, Nagy PD. Role reversal of functional identity in host factors: Dissecting features affecting pro-viral versus antiviral functions of cellular DEAD-box helicases in tombusvirus replication. PLoS Pathog 2020; 16:e1008990. [PMID: 33035275 PMCID: PMC7577489 DOI: 10.1371/journal.ppat.1008990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/21/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Positive-stranded (+)RNA viruses greatly exploit host cells to support viral replication. However, unlike many other pathogens, (+)RNA viruses code for only a limited number of genes, making them highly dependent on numerous co-opted host factors for supporting viral replication and other viral processes during their infections. This excessive dependence on subverted host factors, however, renders (+)RNA viruses vulnerable to host restriction factors that could block virus replication. Interestingly, cellular ATP-dependent DEAD-box RNA helicases could promote or inhibit the replication of Tomato bushy stunt virus (TBSV) replication. However, it is currently unknown what features make a particular DEAD-box helicase either pro-viral or antiviral. In this work, we succeeded in reversing the viral function of the antiviral DDX17-like RH30 DEAD-box helicase by converting it to a pro-viral helicase. We also turned the pro-viral DDX3-like RH20 helicase into an antiviral helicase through deletion of a unique N-terminal domain. We demonstrate that in the absence of the N-terminal domain, the core helicase domain becomes unhinged, showing altered specificity in unwinding viral RNA duplexes containing cis-acting replication elements. The discovery of the sequence plasticity of DEAD-box helicases that can alter recognition of different cis-acting RNA elements in the viral genome illustrates the evolutionary potential of RNA helicases in the arms race between viruses and their hosts, including key roles of RNA helicases in plant innate immunity. Overall, these findings open up the possibility to turn the pro-viral host factors into antiviral factors, thus increasing the potential antiviral arsenal of the host for the benefit of agriculture and health science. The largest group of eukaryotic viruses, the positive-strand RNA viruses, depends greatly on co-opting host components to support their replication. This dependence on host factors by these viruses also makes them vulnerable to antiviral factors. This is well-illustrated in case of tombusviruses, a small RNA viruses of plants. Tombusviruses co-opt many host factors to support various steps in their replication. Among these host factors are cellular DEAD-box helicases, which help remodeling viral RNA structures during the RNA replication process. However, similar cellular helicases remodel the viral RNAs incorrectly, making them antiviral or restriction factors. To gain insights into what makes a particular DEAD-box helicase pro-viral or antiviral, in this work, we converted the antiviral plant RH30 helicase into a pro-viral helicase through modifying the N-terminal sequences. We also succeeded to turn the originally pro-viral plant RH20 helicase into an antiviral helicase using a similar strategy. By characterizing the newly acquired functions of these helicases, we obtained valuable insights into what features make these helicases either pro-viral or antiviral. These discoveries have implications to better understand the arms race between viruses and hosts. In addition, it opens up the opportunity to generate new antiviral tools by converting pro-viral host factors into antiviral factors, thus enhancing our molecular tools against the ever-evolving RNA viruses.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Plant Pathology, University of Kentucky, Lexington, Lexington, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Lexington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Pandey S, Prasad A, Sharma N, Prasad M. Linking the plant stress responses with RNA helicases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110607. [PMID: 32900445 DOI: 10.1016/j.plantsci.2020.110607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 05/21/2023]
Abstract
RNA helicases are omnipresent plant proteins across all kingdoms and have been demonstrated to play an essential role in all cellular processes involving nucleic acids. Currently, these proteins emerged as a new tool for plant molecular biologists to modulate plant stress responses. Here, we review the crucial role of RNA helicases triggered by biotic, abiotic, and multiple stress conditions. In this review, the emphasis has been given on the role of these proteins upon viral stress. Further, we have explored RNA helicase mediated regulation of RNA metabolism, starting from ribosome biogenesis to its decay upon stress induction. We also highlighted the cross-talk between RNA helicase, phytohormones, and ROS. Different overexpression and transgenic studies have been provided in the text to indicate the stress tolerance abilities of these proteins.
Collapse
Affiliation(s)
- Saurabh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Phung B, Cieśla M, Sanna A, Guzzi N, Beneventi G, Cao Thi Ngoc P, Lauss M, Cabrita R, Cordero E, Bosch A, Rosengren F, Häkkinen J, Griewank K, Paschen A, Harbst K, Olsson H, Ingvar C, Carneiro A, Tsao H, Schadendorf D, Pietras K, Bellodi C, Jönsson G. The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Rep 2020; 27:3573-3586.e7. [PMID: 31216476 DOI: 10.1016/j.celrep.2019.05.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
The X-linked DDX3X gene encodes an ATP-dependent DEAD-box RNA helicase frequently altered in various human cancers, including melanomas. Despite its important roles in translation and splicing, how DDX3X dysfunction specifically rewires gene expression in melanoma remains completely unknown. Here, we uncover a DDX3X-driven post-transcriptional program that dictates melanoma phenotype and poor disease prognosis. Through an unbiased analysis of translating ribosomes, we identified the microphthalmia-associated transcription factor, MITF, as a key DDX3X translational target that directs a proliferative-to-metastatic phenotypic switch in melanoma cells. Mechanistically, DDX3X controls MITF mRNA translation via an internal ribosome entry site (IRES) embedded within the 5' UTR. Through this exquisite translation-based regulatory mechanism, DDX3X steers MITF protein levels dictating melanoma metastatic potential in vivo and response to targeted therapy. Together, these findings unravel a post-transcriptional layer of gene regulation that may provide a unique therapeutic vulnerability in aggressive male melanomas.
Collapse
Affiliation(s)
- Bengt Phung
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Adriana Sanna
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Nicola Guzzi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin Lauss
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rita Cabrita
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eugenia Cordero
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frida Rosengren
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jari Häkkinen
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Klaus Griewank
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Katja Harbst
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Oncology and Hematology, Skåne University Hospital, Lund, Sweden
| | - Hensin Tsao
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Göran Jönsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Nagy PD. Host protein chaperones, RNA helicases and the ubiquitin network highlight the arms race for resources between tombusviruses and their hosts. Adv Virus Res 2020; 107:133-158. [PMID: 32711728 PMCID: PMC7342006 DOI: 10.1016/bs.aivir.2020.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Positive-strand RNA viruses need to arrogate many cellular resources to support their replication and infection cycles. These viruses co-opt host factors, lipids and subcellular membranes and exploit cellular metabolites to built viral replication organelles in infected cells. However, the host cells have their defensive arsenal of factors to protect themselves from easy exploitation by viruses. In this review, the author discusses an emerging arms race for cellular resources between viruses and hosts, which occur during the early events of virus-host interactions. Recent findings with tomato bushy stunt virus and its hosts revealed that the need of the virus to exploit and co-opt given members of protein families provides an opportunity for the host to deploy additional members of the same or associated protein family to interfere with virus replication. Three examples with well-established heat shock protein 70 and RNA helicase protein families and the ubiquitin network will be described to illustrate this model on the early arms race for cellular resources between tombusviruses and their hosts. We predict that arms race for resources with additional cellular protein families will be discovered with tombusviruses. These advances will fortify research on interactions among other plant and animal viruses and their hosts.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
8
|
Sasvari Z, Lin W, Inaba JI, Xu K, Kovalev N, Nagy PD. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment. J Virol 2020; 94:e01979-19. [PMID: 32269127 PMCID: PMC7307105 DOI: 10.1128/jvi.01979-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.
Collapse
Affiliation(s)
- Zsuzsanna Sasvari
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Wenwu Lin
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jun-Ichi Inaba
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Kai Xu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
10
|
DEAD-Box Helicases: Sensors, Regulators, and Effectors for Antiviral Defense. Viruses 2020; 12:v12020181. [PMID: 32033386 PMCID: PMC7077277 DOI: 10.3390/v12020181] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
DEAD-box helicases are a large family of conserved RNA-binding proteins that belong to the broader group of cellular DExD/H helicases. Members of the DEAD-box helicase family have roles throughout cellular RNA metabolism from biogenesis to decay. Moreover, there is emerging evidence that cellular RNA helicases, including DEAD-box helicases, play roles in the recognition of foreign nucleic acids and the modulation of viral infection. As intracellular parasites, viruses must evade detection by innate immune sensing mechanisms and degradation by cellular machinery while also manipulating host cell processes to facilitate replication. The ability of DEAD-box helicases to recognize RNA in a sequence-independent manner, as well as the breadth of cellular functions carried out by members of this family, lead them to influence innate recognition and viral infections in multiple ways. Indeed, DEAD-box helicases have been shown to contribute to intracellular immune sensing, act as antiviral effectors, and even to be coopted by viruses to promote their replication. However, our understanding of the mechanisms underlying these interactions, as well as the cellular roles of DEAD-box helicases themselves, is limited in many cases. We will discuss the diverse roles that members of the DEAD-box helicase family play during viral infections.
Collapse
|
11
|
Nagy PD, Lin W. Taking over Cellular Energy-Metabolism for TBSV Replication: The High ATP Requirement of an RNA Virus within the Viral Replication Organelle. Viruses 2020; 12:v12010056. [PMID: 31947719 PMCID: PMC7019945 DOI: 10.3390/v12010056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries on virus-driven hijacking and compartmentalization of the cellular glycolytic and fermentation pathways to support robust virus replication put the spotlight on the energy requirement of viral processes. The active recruitment of glycolytic enzymes in combination with fermentation enzymes by the viral replication proteins emphasizes the advantages of producing ATP locally within viral replication structures. This leads to a paradigm shift in our understanding of how viruses take over host metabolism to support the virus’s energy needs during the replication process. This review highlights our current understanding of how a small plant virus, Tomato bushy stunt virus, exploits a conserved energy-generating cellular pathway during viral replication. The emerging picture is that viruses not only rewire cellular metabolic pathways to obtain the necessary resources from the infected cells but the fast replicating viruses might have to actively hijack and compartmentalize the energy-producing enzymes to provide a readily available source of ATP for viral replication process.
Collapse
|
12
|
Kovalev N, Pogany J, Nagy PD. Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca 2+/Mn 2+ Pump. J Virol 2019; 94:e01015-19. [PMID: 31597780 PMCID: PMC6912095 DOI: 10.1128/jvi.01015-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Lin W, Liu Y, Molho M, Zhang S, Wang L, Xie L, Nagy PD. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation. PLoS Pathog 2019; 15:e1008092. [PMID: 31648290 PMCID: PMC6830812 DOI: 10.1371/journal.ppat.1008092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/05/2019] [Accepted: 09/18/2019] [Indexed: 01/27/2023] Open
Abstract
The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.
Collapse
Affiliation(s)
- Wenwu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuyan Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Melissa Molho
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shengjie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Longshen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
14
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
15
|
Wu CY, Nagy PD. Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD-box helicase. PLoS Pathog 2019; 15:e1007771. [PMID: 31136641 PMCID: PMC6555533 DOI: 10.1371/journal.ppat.1007771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/07/2019] [Accepted: 04/20/2019] [Indexed: 01/07/2023] Open
Abstract
Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
16
|
Hyodo K, Nagai H, Okuno T. Dual function of a cis-acting RNA element that acts as a replication enhancer and a translation repressor in a plant positive-stranded RNA virus. Virology 2017; 512:74-82. [PMID: 28941403 DOI: 10.1016/j.virol.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
The genome of red clover necrotic mosaic virus is divided into two positive-stranded RNA molecules of RNA1 and RNA2, which have no 5' cap structure and no 3' poly(A) tail. Previously, we showed that any mutations in the cis-acting RNA replication elements of RNA2 abolished its cap-independent translational activity, suggesting a strong link between RNA replication and translation. Here, we investigated the functions of the 5' untranslated region (UTR) of RNA2 and revealed that the basal stem-structure (5'BS) predicted in the 5' UTR is essential for robust RNA replication. Interestingly, RNA2 mutants with substitution or deletion in the right side of the 5'BS showed strong translational activity, despite their impaired replication competency. Furthermore, nucleotide sequences other than the 5'BS of the 5' UTR were essential to facilitate the replication-associated translation. Overall, these cis-acting RNA elements seem to coordinately regulate the balance between RNA replication and replication-associated translation.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Hikari Nagai
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| |
Collapse
|
17
|
Chuang C, Prasanth KR, Nagy PD. The Glycolytic Pyruvate Kinase Is Recruited Directly into the Viral Replicase Complex to Generate ATP for RNA Synthesis. Cell Host Microbe 2017; 22:639-652.e7. [PMID: 29107644 DOI: 10.1016/j.chom.2017.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023]
Abstract
Viruses accomplish their replication by exploiting many cellular resources, including metabolites and energy. Similarly to other (+)RNA viruses, tomato bushy stunt virus (TBSV) induces major changes in infected cells. However, the source of energy required to fuel TBSV replication is unknown. We find that TBSV co-opts the cellular glycolytic ATP-generating pyruvate kinase (PK) directly into the viral replicase complex to boost progeny RNA synthesis. The co-opted PK generates high levels of ATP within the viral replication compartment at the expense of a reduction in cytosolic ATP pools. The ATP generated by the co-opted PK is used to promote the helicase activity of recruited cellular DEAD-box helicases, which are involved in the production of excess viral (+)RNA progeny. Altogether, recruitment of PK and local production of ATP within the replication compartment allow the virus replication machinery an access to plentiful ATP, facilitating robust virus replication.
Collapse
Affiliation(s)
- Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | - K Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA.
| |
Collapse
|
18
|
Protein composition analysis of polyhedra matrix of Bombyx mori nucleopolyhedrovirus (BmNPV) showed powerful capacity of polyhedra to encapsulate foreign proteins. Sci Rep 2017; 7:8768. [PMID: 28821766 PMCID: PMC5562830 DOI: 10.1038/s41598-017-08987-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 11/23/2022] Open
Abstract
Polyhedra can encapsulate other proteins and have potential applications as protein stabilizers. The extremely stable polyhedra matrix may provide a platform for future engineered micro-crystal devices. However, the protein composition of the polyhedra matrix remains largely unknown. In this study, the occlusion-derived virus (ODV)-removed BmNPV polyhedra matrix fraction was subjected to SDS-PAGE and then an LC-ESI-MS/MS analysis using a Thermo Scientific Q Exactive mass spectrometer. In total, 28 host and 91 viral proteins were identified. The host components were grouped into one of six categories, i.e., chaperones, ubiquitin and related proteins, host helicases, cytoskeleton-related proteins, RNA-binding proteins and others, according to their predicted Pfam domain(s). Most viral proteins may not be essential for polyhedra assembly, as evidenced by studies in the literature showing that polyhedra formation occurs in the nucleus upon the disruption of individual genes. The structural role of these proteins in baculovirus replication will be of significant interest in future studies. The immobilization of enhanced green fluorescent protein (eGFP) into the polyhedra by fusing with the C-terminus of BM134 that is encoded by open reading frame (ORF) 134 suggested that the polyhedra had a powerful capacity to trap foreign proteins, and BM134 was a potential carrier for incorporating proteins of interest into the polyhedra.
Collapse
|
19
|
Zhang K, Zhang Y, Yang M, Liu S, Li Z, Wang X, Han C, Yu J, Li D. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathog 2017; 13:e1006319. [PMID: 28388677 PMCID: PMC5397070 DOI: 10.1371/journal.ppat.1006319] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/19/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Songyu Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
20
|
Gunawardene CD, Donaldson LW, White KA. Tombusvirus polymerase: Structure and function. Virus Res 2017; 234:74-86. [PMID: 28111194 DOI: 10.1016/j.virusres.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022]
Abstract
Tombusviruses are small icosahedral viruses that possess plus-sense RNA genomes ∼4.8kb in length. The type member of the genus, tomato bushy stunt virus (TBSV), encodes a 92kDa (p92) RNA-dependent RNA polymerase (RdRp) that is responsible for viral genome replication and subgenomic (sg) mRNA transcription. Several functionally relevant regions in p92 have been identified and characterized, including transmembrane domains, RNA-binding segments, membrane targeting signals, and oligomerization domains. Moreover, conserved tombusvirus-specific motifs in the C-proximal region of the RdRp have been shown to modulate viral genome replication, sg mRNA transcription, and trans-replication of subviral replicons. Interestingly, p92 is initially non-functional, and requires an accessory viral protein, p33, as well as viral RNA, host proteins, and intracellular membranes to become active. These and other host factors, through a well-orchestrated process guided by the viral replication proteins, mediate the assembly of membrane-associated virus replicase complexes (VRCs). Here, we describe what is currently known about the structure and function of the tombusvirus RdRp and how it utilizes host components to build VRCs that synthesize viral RNAs.
Collapse
Affiliation(s)
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
21
|
Pugh C, Kolaczkowski O, Manny A, Korithoski B, Kolaczkowski B. Resurrecting ancestral structural dynamics of an antiviral immune receptor: adaptive binding pocket reorganization repeatedly shifts RNA preference. BMC Evol Biol 2016; 16:241. [PMID: 27825296 PMCID: PMC5101713 DOI: 10.1186/s12862-016-0818-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Although resurrecting ancestral proteins is a powerful tool for understanding the molecular-functional evolution of gene families, nearly all studies have examined proteins functioning in relatively stable biological processes. The extent to which more dynamic systems obey the same ‘rules’ governing stable processes is unclear. Here we present the first detailed investigation of the functional evolution of the RIG-like receptors (RLRs), a family of innate immune receptors that detect viral RNA in the cytoplasm. Results Using kinetic binding assays and molecular dynamics simulations of ancestral proteins, we demonstrate how a small number of adaptive protein-coding changes repeatedly shifted the RNA preference of RLRs throughout animal evolution by reorganizing the shape and electrostatic distribution across the RNA binding pocket, altering the hydrogen bond network between the RLR and its RNA target. In contrast to observations of proteins involved in metabolism and development, we find that RLR-RNA preference ‘flip flopped’ between two functional states, and shifts in RNA preference were not always coupled to gene duplications or speciation events. We demonstrate at least one reversion of RLR-RNA preference from a derived to an ancestral function through a novel structural mechanism, indicating multiple structural implementations of similar functions. Conclusions Our results suggest a model in which frequent shifts in selection pressures imposed by an evolutionary arms race preclude the long-term functional optimization observed in stable biological systems. As a result, the evolutionary dynamics of immune receptors may be less constrained by structural epistasis and historical contingency. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0818-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles Pugh
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Austin Manny
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Korithoski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science and Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA. .,Genetics Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
22
|
Nagy PD. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annu Rev Virol 2016; 3:491-515. [PMID: 27578441 DOI: 10.1146/annurev-virology-110615-042312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant positive-strand (+)RNA viruses are intracellular infectious agents that reorganize subcellular membranes and rewire the cellular metabolism of host cells to achieve viral replication in elaborate replication compartments. This review describes the viral replication process based on tombusviruses, highlighting common strategies with other plant and animal viruses. Overall, the works on Tomato bushy stunt virus (TBSV) have revealed intriguing and complex functions of co-opted cellular translation factors, heat shock proteins, DEAD-box helicases, lipid transfer proteins, and membrane-deforming proteins in virus replication. The emerging picture is that many of the co-opted host factors are from highly expressed and conserved protein families. By hijacking host proteins, phospholipids, sterols, and the actin network, TBSV exerts supremacy over the host cell to support viral replication in large replication compartments. Altogether, these advances in our understanding of tombusvirus-host interactions are broadly applicable to many other viruses, which also usurp conserved host factors for various viral processes.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546;
| |
Collapse
|
23
|
Li Y, Xiong R, Bernards M, Wang A. Recruitment of Arabidopsis RNA Helicase AtRH9 to the Viral Replication Complex by Viral Replicase to Promote Turnip Mosaic Virus Replication. Sci Rep 2016; 6:30297. [PMID: 27456972 PMCID: PMC4960543 DOI: 10.1038/srep30297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 02/02/2023] Open
Abstract
Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly dependent on host components to fulfill their life cycle. Recent studies have suggested that DEAD-box RNA helicases play vital roles in many aspects of RNA metabolism. To explore the possible role of the RNA helicases in viral infection, we used the Turnip mosaic virus (TuMV)-Arabidopsis pathosystem. The Arabidopsis genome encodes more than 100 putative RNA helicases (AtRH). Over 41 Arabidopsis T-DNA insertion mutants carrying genetic lesions in the corresponding 26 AtRH genes were screened for their requirement in TuMV infection. TuMV infection assays revealed that virus accumulation significantly decreased in the Arabidopsis mutants of three genes, AtRH9, AtRH26, and PRH75. In the present work, AtRH9 was further characterized. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that AtRH9 interacted with the TuMV NIb protein, the viral RNA-dependent RNA polymerase. Moreover, the subcellular distribution of AtRH9 was altered in the virus-infected cells, and AtRH9 was recruited to the viral replication complex. These results suggest that Arabidopsis AtRH9 is an important component of the TuMV replication complex, possibly recruited via its interaction with NIb.
Collapse
Affiliation(s)
- Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Mark Bernards
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
24
|
Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol 2016; 17:11-18. [DOI: 10.1016/j.coviro.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/05/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023]
|
25
|
Prasanth KR, Kovalev N, de Castro Martín IF, Baker J, Nagy PD. Screening a yeast library of temperature-sensitive mutants reveals a role for actin in tombusvirus RNA recombination. Virology 2016; 489:233-42. [DOI: 10.1016/j.virol.2015.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/15/2015] [Accepted: 12/14/2015] [Indexed: 01/21/2023]
|