1
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Martin M, López-Madrigal S, Newton ILG. The Wolbachia WalE1 effector alters Drosophila endocytosis. PLoS Pathog 2024; 20:e1011245. [PMID: 38547310 PMCID: PMC11003677 DOI: 10.1371/journal.ppat.1011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector-WalE1, which encodes an alpha-synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression of WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates in the host cell cytosol. We next show that WalE1 co-immunoprecipitates with the host protein Past1, although might not directly interact with it, and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. We also show that flies expressing WalE1 suffer from endocytosis defects in larval nephrocytes. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between Wolbachia and a host protein involved in endocytosis and point to yet another important host cell process impinged upon by Wolbachia's WalE1 effector.
Collapse
Affiliation(s)
- MaryAnn Martin
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Sergio López-Madrigal
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana United States of America
| |
Collapse
|
4
|
Hyder M, Lodhi AM, Wang Z, Bukero A, Gao J, Mao R. Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies. BIOLOGY 2024; 13:151. [PMID: 38534421 DOI: 10.3390/biology13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways.
Collapse
Affiliation(s)
- Moazam Hyder
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Abdul Mubeen Lodhi
- Department Plant Protection, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Zhaohong Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Aslam Bukero
- Department of Entomology, Sindh Agriculture University, Tandojam 70080, Pakistan
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
5
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
6
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
9
|
Medina P, Russell SL, Corbett-Detig R. Deep data mining reveals variable abundance and distribution of microbial reproductive manipulators within and among diverse host species. PLoS One 2023; 18:e0288261. [PMID: 37432953 DOI: 10.1371/journal.pone.0288261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1-8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.
Collapse
Affiliation(s)
- Paloma Medina
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Shelbi L Russell
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Russell Corbett-Detig
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
10
|
Zhou JC, Dong QJ, Shang D, Ning SF, Zhang HH, Wang Y, Che WN, Dong H, Zhang LS. Posterior concentration of Wolbachia during the early embryogenesis of the host dynamically shapes the tissue tropism of Wolbachia in host Trichogramma wasps. Front Cell Infect Microbiol 2023; 13:1198428. [PMID: 37424778 PMCID: PMC10324615 DOI: 10.3389/fcimb.2023.1198428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The bacterial endosymbiont, Wolbachia spp. induce thelytokous parthenogenesis in certain parasitoid wasps, such as the egg parasitoid wasps Trichogramma spp. To complete the cycle of vertical transmission, Wolbachia displays efficient transovarial transmission by targeting the reproductive tissues and often exhibits strong tissue-specific tropism in their host. Method The present study aimed to describe the basic Wolbachia distribution patterns that occur during the development of Wolbachia-infected, thelytokous Trichogramma dendrolimi, and T. pretiosum. We used fluorescence in situ hybridization (FISH) to investigate Wolbachia signal dynamics during early embryogenesis (from 30 to 120 min). Wolbachia titers and distributions from the embryo to adult stages of Trichogramma after early embryogenesis were detected by absolute quantitative polymerase chain reaction (AQ-PCR) and FISH. The symmetry ratios (SR) of the Wolbachia signals were calculated using the SR odds ratios in the anterior and posterior parts of the host. The SR was determined to describe Wolbachia tropism during early embryogenesis and various developmental stages of Trichogramma. Results Wolbachia was concentrated in the posterior part of the embryo during early embryogenesis and the various developmental stages of both T. dendrolimi and T. pretiosum. Wolbachia density increased with the number of nuclei and the initial mitotic division frequency during early embryogenesis. The total Wolbachia titer increased with postembryogenesis development in both T. dendrolimi and T. pretiosum. However, the Wolbachia densities relative to body size were significantly lower at the adult and pupal stages than they were at the embryonic stage. Discussion The present work revealed that posterior Wolbachia concentration during early host embryogenesis determined Wolbachia localization in adult wasps. By this mechanism, Wolbachia exhibits efficient vertical transmission across generations by depositing only female Wolbachia-infected offspring. The results of this study describe the dynamics of Wolbachia during the development of their Trichogramma host. The findings of this investigation helped clarify Wolbachia tropism in Trichogramma wasps.
Collapse
Affiliation(s)
- Jin-Cheng Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian-Jin Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Shang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Su-Fang Ning
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huan-Huan Zhang
- Institute of Vegetable, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Ying Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wu-Nan Che
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Li-Sheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Hu D, Li W, Wang J, Peng Y, Yun Y, Peng Y. Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. INSECTS 2023; 14:558. [PMID: 37367374 DOI: 10.3390/insects14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
It was reported that temperature affects the distribution of Wolbachia in the host, but only a few papers reported the effect of the interaction between high temperature and Wolbachia on the biological characteristic of the host. Here, we set four treatment Drosophila melanogaster groups: Wolbachia-infected flies in 25 °C (W+M), Wolbachia-infected flies in 31 °C (W+H), Wolbachia-uninfected flies in 25 °C (W-M), Wolbachia-uninfected flies in 31 °C (W-H), and detected the interaction effect of temperature and Wolbachia infection on the biological characteristic of D. melanogaster in F1, F2 and F3 generations. We found that both temperature and Wolbachia infection had significant effects on the development and survival rate of D. melanogaster. High temperature and Wolbachia infection had interaction effect on hatching rate, developmental durations, emergence rate, body weight and body length of F1, F2 and F3 flies, and the interaction effect also existed on oviposition amount of F3 flies, and on pupation rate of F2 and F3 flies. High temperature stress reduced the Wolbachia vertical transmission efficiency between generations. These results indicated that high temperature stress and Wolbachia infection had negative effects on the morphological development of D. melanogaster.
Collapse
Affiliation(s)
- Die Hu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wanning Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ju Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yaqi Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Martin M, Newton ILG. The Wolbachia WalE1 effector alters Drosophila endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530160. [PMID: 36909520 PMCID: PMC10002650 DOI: 10.1101/2023.02.26.530160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most common intracellular bacterial infection is Wolbachia pipientis, a microbe that manipulates host reproduction and is used in control of insect vectors. Phenotypes induced by Wolbachia have been studied for decades and range from sperm-egg incompatibility to male killing. How Wolbachia alters host biology is less well understood. Previously, we characterized the first Wolbachia effector - WalE1, which encodes a synuclein domain at the N terminus. Purified WalE1 sediments with and bundles actin and when heterologously expressed in flies, increases Wolbachia titer in the developing oocyte. In this work, we first identify the native expression WalE1 by Wolbachia infecting both fly cells and whole animals. WalE1 appears as aggregates, separate from Wolbachia cells. We next show that WalE1 co-immunoprecipitates with the host protein Past1 and that WalE1 manipulates host endocytosis. Yeast expressing WalE1 show deficiency in uptake of FM4-64 dye, and flies harboring mutations in Past1 or overexpressing WalE1 are sensitive to AgNO3, a hallmark of endocytosis defects. Finally, we also show that Past1 null flies harbor more Wolbachia overall and in late egg chambers. Our results identify interactions between a Wolbachia secreted effector and a host protein and point to yet another important host cell process impinged upon by Wolbachia.
Collapse
Affiliation(s)
- MaryAnn Martin
- Department of Biology, Indiana University, Bloomington, IN USA
| | | |
Collapse
|
13
|
Wolbachia Promotes Its Own Uptake by Host Cells. Infect Immun 2023; 91:e0055722. [PMID: 36648231 PMCID: PMC9933726 DOI: 10.1128/iai.00557-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.
Collapse
|
14
|
Abstract
Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.
Collapse
|
15
|
Mills MK, McCabe LG, Rodrigue EM, Lechtreck KF, Starai VJ. Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics. PLoS Pathog 2023; 19:e1010777. [PMID: 36800397 PMCID: PMC9980815 DOI: 10.1371/journal.ppat.1010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/02/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.
Collapse
Affiliation(s)
- Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsey G. McCabe
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Eugenie M. Rodrigue
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
16
|
Mejia AJ, Jimenez L, Dutra HLC, Perera R, McGraw EA. Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities. Heredity (Edinb) 2022; 129:215-224. [PMID: 35869302 PMCID: PMC9519544 DOI: 10.1038/s41437-022-00553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Wolbachia is an insect endosymbiont being used for biological control in the mosquito Aedes aegypti because it causes cytoplasmic incompatibility (CI) and limits viral replication of dengue, chikungunya, and Zika viruses. While the genetic mechanism of pathogen blocking (PB) is not fully understood, the strength of both CI and PB are positively correlated with Wolbachia densities in the host. Wolbachia densities are determined by a combination of Wolbachia strain and insect genotype, as well as interactions with the environment. We employed both artificial selection and inbreeding with the goal of creating lines of Ae. aegypti with heritable and distinct Wolbachia densities so that we might better dissect the mechanism underlying PB. We were unable to shift the mean relative Wolbachia density in Ae. aegypti lines by either strategy, with relative densities instead tending to cycle over a narrow range. In lieu of this, we used Wolbachia densities in mosquito legs as predictors of relative densities in the remaining individual's carcass. Because we worked with outbred mosquitoes, our findings indicate either a lack of genetic variation in the mosquito for controlling relative density, natural selection against extreme densities, or a predominance of environmental factors affecting densities. Our study reveals that there are moderating forces acting on relative Wolbachia densities that may help to stabilize density phenotypes post field release. We also show a means to accurately bin vector carcasses into high and low categories for non-DNA omics-based studies of Wolbachia-mediated traits.
Collapse
Affiliation(s)
- A. J. Mejia
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA
| | - L. Jimenez
- grid.1002.30000 0004 1936 7857School of Life Sciences, Monash University, Clayton, Vic 3800 Australia
| | - H. L. C. Dutra
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - R. Perera
- grid.47894.360000 0004 1936 8083Center for Vector-borne Infectious Diseases and Center for Metabolism of Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - E. A. McGraw
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
17
|
Twort VG, Blande D, Duplouy A. One's trash is someone else's treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts. BMC Microbiol 2022; 22:209. [PMID: 36042402 PMCID: PMC9426245 DOI: 10.1186/s12866-022-02602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts' life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. RESULTS In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. CONCLUSIONS Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.
Collapse
Affiliation(s)
- Victoria G Twort
- Finnish Natural History Museum, LUOMUS, The University of Helsinki, Helsinki, Finland.
| | - Daniel Blande
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| | - Anne Duplouy
- Organismal and Evolutionary Biology, The University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Nascimento da Silva J, Calixto Conceição C, Cristina Ramos de Brito G, Costa Santos D, Martins da Silva R, Arcanjo A, Henrique Ferreira Sorgine M, de Oliveira PL, Andrade Moreira L, da Silva Vaz I, Logullo C. Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103776. [PMID: 35526745 DOI: 10.1016/j.ibmb.2022.103776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto Conceição
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Gisely Cristina Ramos de Brito
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Daniel Costa Santos
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Renato Martins da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Angélica Arcanjo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Pedro L de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Luciano Andrade Moreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Gomes TMFF, Wallau GL, Loreto ELS. Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Sci Rep 2022; 12:8131. [PMID: 35581290 PMCID: PMC9114371 DOI: 10.1038/s41598-022-12299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Wolbachia is a genus of intracellular bacterial endosymbionts found in 20–66% of all insect species and a range of other invertebrates. It is classified as a single species, Wolbachia pipientis, divided into supergroups A to U, with supergroups A and B infecting arthropods exclusively. Wolbachia is transmitted mainly via vertical transmission through female oocytes, but can also be transmitted across different taxa by host shift (HS): the direct transmission of Wolbachia cells between organisms without involving vertically transmitted gametic cells. To assess the HS contribution, we recovered 50 orthologous genes from over 1000 Wolbachia genomes, reconstructed their phylogeny and calculated gene similarity. Of 15 supergroup A Wolbachia lineages, 10 have similarities ranging from 95 to 99.9%, while their hosts’ similarities are around 60 to 80%. For supergroup B, four out of eight lineages, which infect diverse and distantly-related organisms such as Acari, Hemiptera and Diptera, showed similarities from 93 to 97%. These results show that Wolbachia genomes have a much higher similarity when compared to their hosts’ genes, which is a major indicator of HS. Our comparative genomic analysis suggests that, at least for supergroups A and B, HS is more frequent than expected, occurring even between distantly-related species.
Collapse
Affiliation(s)
- Tiago M F F Gomes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Elgion L S Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil. .,Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, CEP 97105.900, Brazil.
| |
Collapse
|
20
|
Kaur R, Leigh BA, Ritchie IT, Bordenstein SR. The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility. PLoS Biol 2022; 20:e3001584. [PMID: 35609042 PMCID: PMC9128985 DOI: 10.1371/journal.pbio.3001584] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native Wolbachia prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which embryos from infected males and uninfected females suffer catastrophic mitotic defects and lethality; however, in infected females, CifA expression rescues the embryonic lethality and thus imparts a fitness advantage to the maternally transmitted Wolbachia. Despite widespread relevance to sex determination, evolution, and vector control, the mechanisms underlying when and how CI impairs male reproduction remain unknown and a topic of debate. Here, we use cytochemical, microscopic, and transgenic assays in D. melanogaster to demonstrate that CifA and CifB proteins of wMel localize to nuclear DNA throughout the process of spermatogenesis. Cif proteins cause abnormal histone retention in elongating spermatids and protamine deficiency in mature sperms that travel to the female reproductive tract with Cif proteins. Notably, protamine gene knockouts enhance wild-type CI. In ovaries, CifA localizes to germ cell nuclei and cytoplasm of early-stage egg chambers; however, Cifs are absent in late-stage oocytes and subsequently in fertilized embryos. Finally, CI and rescue are contingent upon a newly annotated CifA bipartite nuclear localization sequence. Together, our results strongly support the Host modification model of CI in which Cifs initially modify the paternal and maternal gametes to bestow CI-defining embryonic lethality and rescue.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany A. Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Isabella T. Ritchie
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
21
|
Kaavya K, Tharakan J, Joshi CO, Aneesh EM. Role of vertically transmitted viral and bacterial endosymbionts of Aedes mosquitoes. Does Paratransgenesis influence vector-borne disease control? Symbiosis 2022. [DOI: 10.1007/s13199-022-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
23
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
24
|
Reyes JIL, Suzuki Y, Carvajal T, Muñoz MNM, Watanabe K. Intracellular Interactions Between Arboviruses and Wolbachia in Aedes aegypti. Front Cell Infect Microbiol 2021; 11:690087. [PMID: 34249780 PMCID: PMC8261290 DOI: 10.3389/fcimb.2021.690087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika, and Chikungunya human infections. These viruses take advantage of the mosquito’s cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing host cytoskeletal proteins and lipids essential for arboviral infection. Also, Wolbachia strengthens host immunity, cellular regeneration and causes the expression of microRNAs which could potentially be involved in virus inhibition. However, variation in the magnitude of Wolbachia’s pathogen blocking effect that is not due to the endosymbiont’s density has been recently reported. Furthermore, the cellular mechanisms involved in this phenotype differs depending on Wolbachia strain and host species. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how different Wolbachia strains overall affect the mosquito’s cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.
Collapse
Affiliation(s)
- Jerica Isabel L Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Thaddeus Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| | - Maria Nilda M Muñoz
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines.,Research and Development Extension, Cagayan State University, Tuguegarao City, Philippines
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| |
Collapse
|
25
|
Abstract
Recent field trials have demonstrated that dengue incidence can be substantially reduced by introgressing strains of the endosymbiotic bacterium Wolbachia into Aedes aegypti mosquito populations. This strategy relies on Wolbachia reducing the susceptibility of Ae. aegypti to disseminated infection by positive-sense RNA viruses like dengue. However, RNA viruses are well known to adapt to antiviral pressures. Here, we review the viral infection stages where selection for Wolbachia-resistant virus variants could occur. We also consider the genetic constraints imposed on viruses that alternate between vertebrate and invertebrate hosts, and the likely selection pressures to which dengue virus might adapt in order to be effectively transmitted by Ae. aegypti that carry Wolbachia. While there are hurdles to dengue viruses developing resistance to Wolbachia, we suggest that long-term surveillance for resistant viruses should be an integral component of Wolbachia-introgression biocontrol programs.
Collapse
Affiliation(s)
| | - Heather A. Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Johanna E. Fraser
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021. [PMID: 33945798 DOI: 10.20944/preprints202103.0338.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
27
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
28
|
Abstract
Wolbachia is a maternally transmitted bacterium that manipulates arthropod and nematode biology in myriad ways. The Wolbachia strain colonizing Drosophila melanogaster creates sperm-egg incompatibilities and protects its host against RNA viruses, making it a promising tool for vector control. Despite successful trials using Wolbachia-transfected mosquitoes for dengue control, knowledge of how Wolbachia and viruses jointly affect insect biology remains limited. Using the Drosophila melanogaster model, transcriptomics and gene expression network analyses revealed pathways with altered expression and splicing due to Wolbachia colonization and virus infection. Included are metabolic pathways previously unknown to be important for Wolbachia-host interactions. Additionally, Wolbachia-colonized flies exhibit a dampened transcriptomic response to virus infection, consistent with early blocking of virus replication. Finally, using Drosophila genetics, we show that Wolbachia and expression of nucleotide metabolism genes have interactive effects on virus replication. Understanding the mechanisms of pathogen blocking will contribute to the effective development of Wolbachia-mediated vector control programs.IMPORTANCE Recently developed arbovirus control strategies leverage the symbiotic bacterium Wolbachia, which spreads in insect populations and blocks viruses from replicating. While this strategy has been successful, details of how this "pathogen blocking" works are limited. Here, we use a combination of virus infections, fly genetics, and transcriptomics to show that Wolbachia and virus interact at host nucleotide metabolism pathways.
Collapse
|
29
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
30
|
Nyholm SV. In the beginning: egg-microbe interactions and consequences for animal hosts. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190593. [PMID: 32772674 PMCID: PMC7435154 DOI: 10.1098/rstb.2019.0593] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Microorganisms are associated with the eggs of many animals. For some hosts, the egg serves as the ideal environment for the vertical transmission of beneficial symbionts between generations, while some bacteria use the egg to parasitize their hosts. In a number of animal groups, egg microbiomes often perform other essential functions. The eggs of aquatic and some terrestrial animals are especially susceptible to fouling and disease since they are exposed to high densities of microorganisms. To overcome this challenge, some hosts form beneficial associations with microorganisms, directly incorporating microbes and/or microbial products on or in their eggs to inhibit pathogens and biofouling. Other functional roles for egg-associated microbiomes are hypothesized to involve oxygen and nutrient acquisition. Although some egg-associated microbiomes are correlated with increased host fitness and are essential for successful development, the mechanisms that lead to such outcomes are often not well understood. This review article will discuss different functions of egg microbiomes and how these associations have influenced the biology and evolution of animal hosts. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269USA
| |
Collapse
|
31
|
Altinli M, Lequime S, Atyame C, Justy F, Weill M, Sicard M. Wolbachia modulates prevalence and viral load of Culex pipiens densoviruses in natural populations. Mol Ecol 2020; 29:4000-4013. [PMID: 32854141 DOI: 10.1111/mec.15609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.
Collapse
Affiliation(s)
- Mine Altinli
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Centre for Infection research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Celestine Atyame
- Ile de La Réunion, Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, France
| | - Fabienne Justy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mylene Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
32
|
Abstract
Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct. Kidney stones affect nearly 10% of the population in North America and are associated with high morbidity and recurrence, yet novel prevention strategies are lacking. Recent evidence suggests that the human gut microbiota can influence the development of nephrolithiasis, although clinical trials have been limited and inconclusive in determining the potential for microbially based interventions. Here, we used an established Drosophila melanogaster model of urolithiasis as a high-throughput screening platform for evaluation of the therapeutic potential of oxalate-degrading bacteria in calcium oxalate (CaOx) nephrolithiasis. The results demonstrated that Bacillus subtilis 168 (BS168) is a promising candidate based on its preferential growth in high oxalate concentrations, its ability to stably colonize the D. melanogaster intestinal tract for as long as 5 days, and its prevention of oxalate-induced microbiota dysbiosis. Single-dose BS168 supplementation exerted beneficial effects on D. melanogaster for as long as 14 days, decreasing stone burden in dissected Malpighian tubules and fecal excreta while increasing survival and behavioral markers of health over those of nonsupplemented lithogenic controls. These findings were complemented by in vitro experiments using the established MDCK renal cell line, which demonstrated that BS168 pretreatment prevented increased CaOx crystal adhesion and aggregation. Taking our results together, this study supports the notion that BS168 can functionally reduce CaOx stone burden in vivo through its capacity for oxalate degradation. Given the favorable safety profile of many B. subtilis strains already used as digestive aids and in fermented foods, these findings suggest that BS168 could represent a novel therapeutic adjunct to reduce the incidence of recurrent CaOx nephrolithiasis in high-risk patients. IMPORTANCE Kidney stone disease is a morbid condition that is increasing in prevalence, with few nonsurgical treatment options. The majority of stones are composed of calcium oxalate. Unlike humans, some microbes can break down oxalate, suggesting that microbial therapeutics may provide a novel treatment for kidney stone patients. This study demonstrated that Bacillus subtilis 168 (BS168) decreased stone burden, improved health, and complemented the microbiota in a Drosophila melanogaster urolithiasis model, while not exacerbating calcium oxalate aggregation or adhesion to renal cells in vitro. These results identify this bacterium as a candidate for ameliorating stone formation; given that other strains of B. subtilis are components of fermented foods and are used as probiotics for digestive health, strain 168 warrants testing in humans. With the severe burden that recurrent kidney stone disease imposes on patients and the health care system, this microbial therapeutic approach could provide an inexpensive therapeutic adjunct.
Collapse
|
33
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
34
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
35
|
Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathog 2020; 16:e1008397. [PMID: 32187233 PMCID: PMC7105135 DOI: 10.1371/journal.ppat.1008397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are maternally transmitted intracellular bacteria that induce a range of pathogenic and fitness-altering effects on insect and nematode hosts. In parasitoid wasps of the genus Trichogramma, Wolbachia infection induces asexual production of females, thus increasing transmission of Wolbachia. It has been hypothesized that Wolbachia infection accompanies a modification of the host epigenome. However, to date, data on genome-wide epigenomic changes associated with Wolbachia are limited, and are often confounded by background genetic differences. Here, we took sexually reproducing Trichogramma free of Wolbachia and introgressed their genome into a Wolbachia-infected cytoplasm, converting them to Wolbachia-mediated asexuality. Wolbachia was then cured from replicates of these introgressed lines, allowing us to examine the genome-wide effects of wasps newly converted to asexual reproduction while controlling for genetic background. We thus identified gene expression and DNA methylation changes associated with Wolbachia-infection. We found no overlaps between differentially expressed genes and differentially methylated genes, indicating that Wolbachia-infection associated DNA methylation change does not directly modulate levels of gene expression. Furthermore, genes affected by these mechanisms exhibit distinct evolutionary histories. Genes differentially methylated due to the infection tended to be evolutionarily conserved. In contrast, differentially expressed genes were significantly more likely to be unique to the Trichogramma lineage, suggesting host-specific transcriptomic responses to infection. Nevertheless, we identified several novel aspects of Wolbachia-associated DNA methylation changes. Differentially methylated genes included those involved in oocyte development and chromosome segregation. Interestingly, Wolbachia-infection was associated with higher levels of DNA methylation. Additionally, Wolbachia infection reduced overall variability in gene expression, even after accounting for the effect of DNA methylation. We also identified specific cases where alternative exon usage was associated with DNA methylation changes due to Wolbachia infection. These results begin to reveal distinct genes and molecular pathways subject to Wolbachia induced epigenetic modification and/or host responses to Wolbachia-infection. Wolbachia is an extremely common endosymbiotic infection of arthropods and nematodes. One of the reasons why Wolbachia can so successfully infect diverse species is the bacterium’s ability to profoundly alter the reproductive behavior of its host. It has been proposed that Wolbachia may modify host’s epigenetic programs to alter its reproductive behavior. However, it has been difficult to study how epigenetic programs change with Wolbachia infection, due to the confounding effects of genetic backgrounds. Here, we studied host transcriptome and epigenome changes associated with Wolbachia infection in a homogenous genetic background, by carrying out an innovative introgression scheme. By doing so, we show, for the first time, high-resolution molecular consequences of intracellular infection and offer insights into epigenetic and transcriptomic regulation of invertebrates.
Collapse
|
36
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
37
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
38
|
Becking T, Chebbi MA, Giraud I, Moumen B, Laverré T, Caubet Y, Peccoud J, Gilbert C, Cordaux R. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLoS Biol 2019; 17:e3000438. [PMID: 31600190 PMCID: PMC6805007 DOI: 10.1371/journal.pbio.3000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.
Collapse
Affiliation(s)
- Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Tiffany Laverré
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Yves Caubet
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
39
|
Christensen S, Camacho M, Sharmin Z, Momtaz AJMZ, Perez L, Navarro G, Triana J, Samarah H, Turelli M, Serbus LR. Quantitative methods for assessing local and bodywide contributions to Wolbachia titer in maternal germline cells of Drosophila. BMC Microbiol 2019; 19:206. [PMID: 31481018 PMCID: PMC6724367 DOI: 10.1186/s12866-019-1579-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Little is known about how bacterial endosymbionts colonize host tissues. Because many insect endosymbionts are maternally transmitted, egg colonization is critical for endosymbiont success. Wolbachia bacteria, carried by approximately half of all insect species, provide an excellent model for characterizing endosymbiont infection dynamics. To date, technical limitations have precluded stepwise analysis of germline colonization by Wolbachia. It is not clear to what extent titer-altering effects are primarily mediated by growth rates of Wolbachia within cell lineages or migration of Wolbachia between cells. RESULTS The objective of this work is to inform mechanisms of germline colonization through use of optimized methodology. The approaches are framed in terms of nutritional impacts on Wolbachia. Yeast-rich diets in particular have been shown to suppress Wolbachia titer in the Drosophila melanogaster germline. To determine the extent of Wolbachia sensitivity to diet, we optimized 3-dimensional, multi-stage quantification of Wolbachia titer in maternal germline cells. Technical and statistical validation confirmed the identity of Wolbachia in vivo, the reproducibility of Wolbachia quantification and the statistical power to detect these effects. The data from adult feeding experiments demonstrated that germline Wolbachia titer is distinctly sensitive to yeast-rich host diets in late oogenesis. To investigate the physiological basis for these nutritional impacts, we optimized methodology for absolute Wolbachia quantification by real-time qPCR. We found that yeast-rich diets exerted no significant effect on bodywide Wolbachia titer, although ovarian titers were significantly reduced. This suggests that host diets affects Wolbachia distribution between the soma and late stage germline cells. Notably, relative qPCR methods distorted apparent wsp abundance, due to altered host DNA copy number in yeast-rich conditions. This highlights the importance of absolute quantification data for testing mechanistic hypotheses. CONCLUSIONS We demonstrate that absolute quantification of Wolbachia, using well-controlled cytological and qPCR-based methods, creates new opportunities to determine how bacterial abundance within the germline relates to bacterial distribution within the body. This methodology can be applied to further test germline infection dynamics in response to chemical treatments, genetic conditions, new host/endosymbiont combinations, or potentially adapted to analyze other cell and tissue types.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Moises Camacho
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Zinat Sharmin
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - A. J. M. Zehadee Momtaz
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Laura Perez
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Giselle Navarro
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Jairo Triana
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Hani Samarah
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616 USA
| | - Laura R. Serbus
- Department of Biological Sciences, Florida International University, Miami, FL 33199 USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199 USA
| |
Collapse
|
40
|
Sigle LT, McGraw EA. Expanding the canon: Non-classical mosquito genes at the interface of arboviral infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:72-80. [PMID: 30970277 DOI: 10.1016/j.ibmb.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/10/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mosquito transmitted viruses cause significant morbidity and mortality in human populations. Despite the use of insecticides and other measures of vector control, arboviral diseases are on the rise. One potential solution for limiting disease transmission to humans is to render mosquitoes refractory to viral infection through genetic modification. Substantial research effort in Drosophila, Aedes and Anopheles has helped to define the major innate immune pathways, including Toll, IMD, Jak/Stat and RNAi, however we still have an incomplete picture of the mosquito antiviral response. Transcriptional profiles of virus-infected insects reveal a much wider range of pathways activated by the process of infection. Within these lists of genes are unexplored mosquito candidates of viral defense. Wolbachia species are endosymbiotic bacteria that naturally limit arboviral infection in mosquitoes. Our understanding of the Wolbachia-mediated viral blocking mechanism is poor, but it does not appear to operate via the classical immune pathways. Herein, we reviewed the transcriptomic response of mosquitoes to multiple viral species and put forth consensus gene types/families outside the immune canon whose expression responds to infection, including cytoskeleton and cellular trafficking, the heat shock response, cytochromes P450, cell proliferation, chitin and small RNAs. We then examine emerging evidence for their functional role in viral resistance in diverse insect and mammalian hosts and their potential role in Wolbachia-mediated viral blocking. These candidate gene families offer novel avenues for research into the nature of insect viral defense.
Collapse
Affiliation(s)
- Leah T Sigle
- Center for Infectious Disease Dynamics, Department of Entomology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Elizabeth A McGraw
- Center for Infectious Disease Dynamics, Department of Entomology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
41
|
Abstract
The Wolbachia endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to Anaplasma, Ehrlichia, and Rickettsia. This genus of Gram-negative members of the Alphaproteobacteria does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The Wolbachia profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made Wolbachia a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the Wolbachia are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the Wolbachia resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the "-omics" revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by Wolbachia, and the identification of Wolbachia effectors is ongoing.
Collapse
|
42
|
Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver B, Lehmann R. Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathog 2018; 14:e1007445. [PMID: 30422992 PMCID: PMC6258568 DOI: 10.1371/journal.ppat.1007445] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/27/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
Wolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.
Collapse
Affiliation(s)
- Yolande Grobler
- Department of Cell Biology, Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, United States of America
| | - Chi Y. Yun
- High Throughput Biology Core, Skirball Institute at New York University Langone Medical Center, New York, NY, United States of America
| | - David J. Kahler
- High Throughput Biology Core, Skirball Institute at New York University Langone Medical Center, New York, NY, United States of America
| | - Casey M. Bergman
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Hangnoh Lee
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, United States of America
| |
Collapse
|
43
|
Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, Carlow CKS, Starai VJ. Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One 2018; 13:e0204736. [PMID: 30261054 PMCID: PMC6160203 DOI: 10.1371/journal.pone.0204736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022] Open
Abstract
Wolbachia is an unculturable, intracellular bacterium that persists within an extremely broad range of arthropod and parasitic nematode hosts, where it is transmitted maternally to offspring via vertical transmission. In the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis, Wolbachia is an endosymbiont, and its presence is essential for proper nematode development, survival, and pathogenesis. While the elucidation of Wolbachia:nematode interactions that promote the bacterium’s intracellular persistence is of great importance, research has been hampered due to the fact that Wolbachia cannot be cultured in the absence of host cells. The Wolbachia endosymbiont of B. malayi (wBm) has an active Type IV secretion system (T4SS). Here, we have screened 47 putative T4SS effector proteins of wBm for their ability to modulate growth or the cell biology of a typical eukaryotic cell, Saccharomyces cerevisiae. Five candidates strongly inhibited yeast growth upon expression, and 6 additional proteins showed toxicity in the presence of zinc and caffeine. Studies on the uptake of an endocytic vacuole-specific fluorescent marker, FM4-64, identified 4 proteins (wBm0076 wBm00114, wBm0447 and wBm0152) involved in vacuole membrane dynamics. The WAS(p)-family protein, wBm0076, was found to colocalize with yeast cortical actin patches and disrupted actin cytoskeleton dynamics upon expression. Deletion of the Arp2/3-activating protein, Abp1p, provided resistance to wBm0076 expression, suggesting a role for wBm0076 in regulating eukaryotic actin dynamics and cortical actin patch formation. Furthermore, wBm0152 was found to strongly disrupt endosome:vacuole cargo trafficking in yeast. This study provides molecular insight into the potential role of the T4SS in the Wolbachia endosymbiont:nematode relationship.
Collapse
Affiliation(s)
- Emily M. Carpinone
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Zhiru Li
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clemence Foltz
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Emma R. Brannon
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
| | - Clotilde K. S. Carlow
- Division of Genome Biology, New England Biolabs, Ipswich, MA, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Guo Y, Hoffmann AA, Xu XQ, Mo PW, Huang HJ, Gong JT, Ju JF, Hong XY. Vertical Transmission of Wolbachia Is Associated With Host Vitellogenin in Laodelphax striatellus. Front Microbiol 2018; 9:2016. [PMID: 30233514 PMCID: PMC6127624 DOI: 10.3389/fmicb.2018.02016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/09/2018] [Indexed: 11/22/2022] Open
Abstract
Wolbachia in host germ lines are essential for their vertical transmission to the next generation. It is unclear how the regulation of host oocyte development influences Wolbachia location and the mechanistic basis of transmission. Here, we investigated whether vitellogenin influences Wolbachia transmission in Laodelphax striatellus. Wolbachia increased in density and spread from the anterior tropharium to developing oocytes as ovaries developed. Microscopic observations indicated that Wolbachia invaded ovarioles from the tropharium of its anterior side rather than the pedicel side. Wolbachia utilized the host Vg transovarial transportation system to enter the ovaries and were transmitted from the tropharium into the developing oocytes through nutritive cords. These observations were supported by knocking down the Vg transcript, in which low Wolbachia titers were detected in ovaries and fewer Wolbachia were transmitted into oocytes. Our findings establish a link between the Vg-related mode of transovarial transmission and efficient maternal transmission of Wolbachia.
Collapse
Affiliation(s)
- Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qin Xu
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Pei-Wen Mo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Fei Ju
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Ogienko AA, Yarinich LA, Fedorova EV, Lebedev MO, Andreyeva EN, Pindyurin AV, Baricheva EM. New slbo-Gal4 driver lines for the analysis of border cell migration during Drosophila oogenesis. Chromosoma 2018; 127:475-487. [DOI: 10.1007/s00412-018-0676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022]
|
46
|
Funkhouser-Jones LJ, van Opstal EJ, Sharma A, Bordenstein SR. The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Curr Biol 2018; 28:1692-1702.e6. [PMID: 29779872 PMCID: PMC5988964 DOI: 10.1016/j.cub.2018.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
Maternal transmission of intracellular microbes is pivotal in establishing long-term, intimate symbioses. For germline microbes that exert negative reproductive effects on their hosts, selection can theoretically favor the spread of host genes that counteract the microbe's harmful effects. Here, we leverage a major difference in bacterial (Wolbachia pipientis) titers between closely related wasp species with forward genetic, transcriptomic, and cytological approaches to map two quantitative trait loci that suppress bacterial titers via a maternal effect. Fine mapping and knockdown experiments identify the gene Wolbachia density suppressor (Wds), which dominantly suppresses bacterial transmission from mother to embryo. Wds evolved by lineage-specific non-synonymous changes driven by positive selection. Collectively, our findings demonstrate that a genetically simple change arose by positive Darwinian selection in less than a million years to regulate maternally transmitted bacteria via a dominant, maternal effect gene.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Edward J van Opstal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ananya Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Genetics Institute, Nashville, TN 37235, USA.
| |
Collapse
|
47
|
Henry LP, Newton ILG. Mitochondria and Wolbachia titers are positively correlated during maternal transmission. Mol Ecol 2018; 27:2634-2646. [PMID: 29691935 DOI: 10.1111/mec.14700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
Abstract
Mothers provide their offspring with symbionts. Maternally transmitted, intracellular symbionts must disperse from mother to offspring with other cytoplasmic elements, like mitochondria. Here, we investigated how the intracellular symbiont Wolbachia interacts with mitochondria during maternal transmission. Mitochondria and Wolbachia may interact antagonistically and compete as each population tries to ensure its own evolutionary success. Alternatively, mitochondria and Wolbachia may cooperate as both benefit from ensuring the fitness of the mother. We characterized the relationship between mitochondria and Wolbachia titers in ovaries of Drosophila melanogaster. We found that mitochondria and Wolbachia titers are positively correlated in common laboratory genotypes of D. melanogaster. We attempted to perturb this covariation through the introduction of Wolbachia variants that colonize at different titers. We also attempted to perturb the covariation through manipulating the female reproductive tract to disrupt maternal transmission. Finally, we also attempted to disrupt the covariation by knocking down gene expression for two loci involved in mitochondrial metabolism: NADH dehydrogenase and a mitochondrial transporter. Overall, we find that mitochondria and Wolbachia titers are commonly positively correlated, but this positive covariation is disrupted at high titers of Wolbachia. Our results suggest that mitochondria and Wolbachia have likely evolved mechanisms to stably coexist, but the competitive dynamics change at high Wolbachia titers. We provide future directions to better understand how their interaction influences the maintenance of the symbiosis.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Biology, Indiana University, Bloomington, Indianapolis
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, Indianapolis
| |
Collapse
|
48
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|
49
|
Terradas G, Allen SL, Chenoweth SF, McGraw EA. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit Vectors 2017; 10:622. [PMID: 29282144 PMCID: PMC5746003 DOI: 10.1186/s13071-017-2589-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. METHODS We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. RESULTS We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). CONCLUSIONS In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Rice DW, Sheehan KB, Newton ILG. Large-Scale Identification of Wolbachia pipientis Effectors. Genome Biol Evol 2017; 9:1925-1937. [PMID: 28854601 PMCID: PMC5544941 DOI: 10.1093/gbe/evx139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Wolbachia pipientis is an intracellular symbiont of arthropods well known for the reproductive manipulations induced in the host and, more recently, for the ability of Wolbachia to block virus replication in insect vectors. Since Wolbachia cannot yet be genetically manipulated, and due to the constraints imposed when working with an intracellular symbiont, little is known about mechanisms used by Wolbachia for host interaction. Here we employed a bioinformatics pipeline and identified 163 candidate effectors, potentially secreted by Wolbachia into the host cell. A total of 84 of these candidates were then subjected to a screen of growth defects induced in yeast upon heterologous expression which identified 14 top candidates likely secreted by Wolbachia. These predicted secreted effectors may function in concert as we find that their native expression is correlated and is highly upregulated at specific time points during Drosophila development. In addition, the evolutionary histories of some of these predicted effectors are also correlated, suggesting they may function together, or in the same pathway, during host infection. Similarly, most of these predicted effectors are limited to one or two Wolbachia strains—perhaps reflecting shared evolutionary history and strain specific functions in host manipulation. Identification of these Wolbachia candidate effectors is the first step in dissecting the mechanisms of symbiont–host interaction in this important system.
Collapse
Affiliation(s)
- Danny W Rice
- Department of Biology, Indiana University, Bloomington
| | | | | |
Collapse
|