1
|
Araujo Furlan CL, Boccardo S, Rodriguez C, Mary VS, Gimenez CMS, Robson SC, Gruppi A, Montes CL, Acosta Rodríguez EV. CD39 expression by regulatory T cells participates in CD8+ T cell suppression during experimental Trypanosoma cruzi infection. PLoS Pathog 2024; 20:e1012191. [PMID: 38683845 PMCID: PMC11081507 DOI: 10.1371/journal.ppat.1012191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Collapse
Affiliation(s)
- Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Verónica S. Mary
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Camila M. S. Gimenez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
2
|
Araujo Furlan CL, Boccardo S, Rodriguez C, Robson SC, Gruppi A, Montes CL, Acosta Rodríguez EV. CD39 expression by regulatory T cells drives CD8+ T cell suppression during experimental Trypanosoma cruzi infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557792. [PMID: 37745571 PMCID: PMC10515944 DOI: 10.1101/2023.09.14.557792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a critical role during the initial stages after T. cruzi infection, subsequently influencing CD8+ T cells. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell responses. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, leading to improved parasite control during T. cruzi infection. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Collapse
|
3
|
Mateus J, Nocua P, Lasso P, López MC, Thomas MC, Egui A, Cuervo C, González JM, Puerta CJ, Cuéllar A. CD8 + T Cell Response Quality Is Related to Parasite Control in an Animal Model of Single and Mixed Chronic Trypanosoma cruzi Infections. Front Cell Infect Microbiol 2021; 11:723121. [PMID: 34712620 PMCID: PMC8546172 DOI: 10.3389/fcimb.2021.723121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (ChD) is a chronic infection caused by Trypanosoma cruzi. This highly diverse intracellular parasite is classified into seven genotypes or discrete typing units (DTUs) and they overlap in geographic ranges, vectors, and clinical characteristics. Although studies have suggested that ChD progression is due to a decline in the immune response quality, a direct relationship between T cell responses and disease outcome is still unclear. To investigate the relationship between parasite control and immune T cell responses, we used two distinct infection approaches in an animal model to explore the histological and parasitological outcomes and dissect the T cell responses in T. cruzi-infected mice. First, we performed single infection experiments with DA (TcI) or Y (TcII) T. cruzi strains to compare the infection outcomes and evaluate its relationship with the T cell response. Second, because infections with diverse T. cruzi genotypes can occur in naturally infected individuals, mice were infected with the Y or DA strain and subsequently reinfected with the Y strain. We found different infection outcomes in the two infection approaches used. The single chronic infection showed differences in the inflammatory infiltrate level, while mixed chronic infection by different T. cruzi DTUs showed dissimilarities in the parasite loads. Chronically infected mice with a low inflammatory infiltrate (DA-infected mice) or low parasitemia and parasitism (Y/Y-infected mice) showed increases in early-differentiated CD8+ T cells, a multifunctional T cell response and lower expression of inhibitory receptors on CD8+ T cells. In contrast, infected mice with a high inflammatory infiltrate (Y-infected mice) or high parasitemia and parasitism (DA/Y-infected mice) showed a CD8+ T cell response distinguished by an increase in late-differentiated cells, a monofunctional response, and enhanced expression of inhibitory receptors. Overall, our results demonstrated that the infection outcomes caused by single or mixed T. cruzi infection with different genotypes induce a differential immune CD8+ T cell response quality. These findings suggest that the CD8+ T cell response might dictate differences in the infection outcomes at the chronic T. cruzi stage. This study shows that the T cell response quality is related to parasite control during chronic T. cruzi infection.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo de Ciencias de Laboratorio Clínico, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Moraschi BF, Noronha IH, Ferreira CP, Cariste LM, Monteiro CB, Denapoli P, Vrechi T, Pereira GJS, Gazzinelli RT, Lannes-Vieira J, Rodrigues MM, Bortoluci KR, Vasconcelos JRC. Rapamycin Improves the Response of Effector and Memory CD8 + T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:676183. [PMID: 34123875 PMCID: PMC8191465 DOI: 10.3389/fcimb.2021.676183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Deficiency in memory formation and increased immunosenescence are pivotal features of Trypanosoma cruzi infection proposed to play a role in parasite persistence and disease development. The vaccination protocol that consists in a prime with plasmid DNA followed by the boost with a deficient recombinant human adenovirus type 5, both carrying the ASP2 gene of T. cruzi, is a powerful strategy to elicit effector memory CD8+ T-cells against this parasite. In virus infections, the inhibition of mTOR, a kinase involved in several biological processes, improves the response of memory CD8+ T-cells. Therefore, our aim was to assess the role of rapamycin, the pharmacological inhibitor of mTOR, in CD8+ T response against T. cruzi induced by heterologous prime-boost vaccine. For this purpose, C57BL/6 or A/Sn mice were immunized and daily treated with rapamycin for 34 days. CD8+ T-cells response was evaluated by immunophenotyping, intracellular staining, ELISpot assay and in vivo cytotoxicity. In comparison with vehicle-injection, rapamycin administration during immunization enhanced the frequency of ASP2-specific CD8+ T-cells and the percentage of the polyfunctional population, which degranulated (CD107a+) and secreted both interferon gamma (IFNγ) and tumor necrosis factor (TNF). The beneficial effects were long-lasting and could be detected 95 days after priming. Moreover, the effects were detected in mice immunized with ten-fold lower doses of plasmid/adenovirus. Additionally, the highly susceptible to T. cruzi infection A/Sn mice, when immunized with low vaccine doses, treated with rapamycin, and challenged with trypomastigote forms of the Y strain showed a survival rate of 100%, compared with 42% in vehicle-injected group. Trying to shed light on the biological mechanisms involved in these beneficial effects on CD8+ T-cells by mTOR inhibition after immunization, we showed that in vivo proliferation was higher after rapamycin treatment compared with vehicle-injected group. Taken together, our data provide a new approach to vaccine development against intracellular parasites, placing the mTOR inhibitor rapamycin as an adjuvant to improve effective CD8+ T-cell response.
Collapse
Affiliation(s)
- Barbara Ferri Moraschi
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isaú Henrique Noronha
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Camila Pontes Ferreira
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo M. Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Caroline B. Monteiro
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Priscila Denapoli
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Talita Vrechi
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Gustavo J. S. Pereira
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - Ricardo T. Gazzinelli
- René Rachou Research Center, Fiocruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joseli Lannes-Vieira
- Laboratoy of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Maurício M. Rodrigues
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Karina R. Bortoluci
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Pharmacology, Federal University of São Paulo, (UNIFESP), São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Molecular Immunology Laboratory, Center of Molecular and Cellular Therapy, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
5
|
Pérez‐Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol 2021; 43:e12786. [PMID: 32799361 PMCID: PMC11475410 DOI: 10.1111/pim.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | - Alexander I. Ward
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Michael D. Lewis
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
6
|
Acosta Rodríguez EV, Araujo Furlan CL, Fiocca Vernengo F, Montes CL, Gruppi A. Understanding CD8 + T Cell Immunity to Trypanosoma cruzi and How to Improve It. Trends Parasitol 2019; 35:899-917. [PMID: 31607632 PMCID: PMC6815727 DOI: 10.1016/j.pt.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.
Collapse
Affiliation(s)
- Eva V Acosta Rodríguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina.
| | - Cintia L Araujo Furlan
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| |
Collapse
|
7
|
Cabrera G, Marcipar I. Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine 2019; 37:3628-3637. [PMID: 31155420 DOI: 10.1016/j.vaccine.2019.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
The knowledge that the immune system is composed of a regulatory/suppressor arm added a new point of view to better understand the nature of several pathologies including cancer, transplants, infections and autoimmune diseases. The striking discoveries concerning molecules and cells involved in this kind of regulation were followed by the elucidation of equally notable mechanisms used by several pathogens to manipulate the host immune system. Vaccines against pathogens are an invaluable tool developed to help the immune system cope with a potential infection or prevent disease pathology. Nowadays, there is accumulated evidence indicating that the powerful stimulation capacity of vaccines influences not only the effector arm of the immune system but also cells with regulatory/suppressor capacity, such as myeloid derived suppressor cells (MDSCs) and Foxp3+ regulatory T cells (Tregs). Trypanosoma cruzi (T. cruzi) is a protozoan parasite with a complex life cycle that has evolved several strategies to influence the regulatory immune response. Although diverse vaccine formulations have been able to stimulate the effector response, achieving non-sterilizing protection against T. cruzi, the influence of the vaccine candidates on the regulatory machinery has scarcely been assessed. This fact may not only reveal important information concerning how vaccines may influence cells with regulatory/suppressor capacity but also open the possibility to analyze whether vaccines are able to disrupt the mechanisms used by some pathogens to manipulate the host regulatory circuits. The aim of this review is to summarize and discuss available data related to the role of cellular components, like MDSCs and Foxp3+ Tregs, during T. cruzi infection, and the potential utility of those populations as additional targets for the rational design of vaccines.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
8
|
Mateus J, Guerrero P, Lasso P, Cuervo C, González JM, Puerta CJ, Cuéllar A. An Animal Model of Acute and Chronic Chagas Disease With the Reticulotropic Y Strain of Trypanosoma cruzi That Depicts the Multifunctionality and Dysfunctionality of T Cells. Front Immunol 2019; 10:918. [PMID: 31105709 PMCID: PMC6499084 DOI: 10.3389/fimmu.2019.00918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
Chagas disease (ChD), a complex and persistent parasitosis caused by Trypanosoma cruzi, represents a natural model of chronic infection, in which some people exhibit cardiac or digestive complications that can result in death 20–40 years after the initial infection. Nonetheless, due to unknown mechanisms, some T. cruzi-infected individuals remain asymptomatic throughout their lives. Actually, no vaccine is available to prevent ChD, and treatments for chronic ChD patients are controversial. Chronically T. cruzi-infected individuals exhibit a deterioration of T cell function, an exhaustion state characterized by poor cytokine production and increased inhibitory receptor co-expression, suggesting that these changes are potentially related to ChD progression. Moreover, an effective anti-parasitic treatment appears to reverse this state and improve the T cell response. Taking into account these findings, the functionality state of T cells might provide a potential correlate of protection to detect individuals who will or will not develop the severe forms of ChD. Consequently, we investigated the T cell response, analyzed by flow cytometry with two multicolor immunofluorescence panels, to assess cytokines/cytotoxic molecules and the expression of inhibitory receptors, in a murine model of acute (10 and 30 days) and chronic (100 and 260 days) ChD, characterized by parasite persistence for up to 260 days post-infection and moderate inflammation of the colon and liver of T. cruzi-infected mice. Acute ChD induced a high antigen-specific multifunctional T cell response by producing IFN-γ, TNF-α, IL-2, granzyme B, and perforin; and a high frequency of T cells co-expressed 2B4, CD160, CTLA-4, and PD-1. In contrast, chronically infected mice with moderate inflammatory infiltrate in liver tissue exhibited monofunctional antigen-specific cells, high cytotoxic activity (granzyme B and perforin), and elevated levels of inhibitory receptors (predominantly CTLA-4 and PD-1) co-expressed on T cells. Taken together, these data support our previous results showing that similar to humans, the T. cruzi persistence in mice promotes the dysfunctionality of T cells, and these changes might correlate with ChD progression. Thus, these results constitute a model that will facilitate an in-depth search for immune markers and correlates of protection, as well as long-term studies of new immunotherapy strategies for ChD.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paula Guerrero
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
9
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
PA28 modulates antigen processing and viral replication during coxsackievirus B3 infection. PLoS One 2017; 12:e0173259. [PMID: 28278207 PMCID: PMC5344377 DOI: 10.1371/journal.pone.0173259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 11/19/2022] Open
Abstract
The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and β, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28β subunits in heart tissue. PA28α/β exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/β-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/β is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/β in vitro, gene ablation of PA28α/β in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/β is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.
Collapse
|
11
|
Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 2017; 96:131-142. [DOI: 10.1016/j.ejcb.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
|
12
|
Ersching J, Basso AS, Calich VLG, Bortoluci KR, Rodrigues MM. Correction: A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells. PLoS Pathog 2016; 12:e1005771. [PMID: 27399890 PMCID: PMC4939951 DOI: 10.1371/journal.ppat.1005771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|