1
|
Vrieling F, van der Zande HJP, Naus B, Smeehuijzen L, van Heck JIP, Ignacio BJ, Bonger KM, Van den Bossche J, Kersten S, Stienstra R. CENCAT enables immunometabolic profiling by measuring protein synthesis via bioorthogonal noncanonical amino acid tagging. CELL REPORTS METHODS 2024; 4:100883. [PMID: 39437716 PMCID: PMC11573747 DOI: 10.1016/j.crmeth.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cellular energy metabolism significantly contributes to immune cell function. To further advance immunometabolic research, novel methods to study the metabolism of immune cells in complex samples are required. Here, we introduce CENCAT (cellular energetics through noncanonical amino acid tagging). This technique utilizes click labeling of alkyne-bearing noncanonical amino acids to measure protein synthesis inhibition as a proxy for metabolic activity. CENCAT successfully reproduced known metabolic signatures of lipopolysaccharide (LPS)/interferon (IFN)γ and interleukin (IL)-4 activation in human primary macrophages. Application of CENCAT in peripheral blood mononuclear cells revealed diverse metabolic rewiring upon stimulation with different activators. Finally, CENCAT was used to analyze the cellular metabolism of murine tissue-resident immune cells from various organs. Tissue-specific clustering was observed based on metabolic profiles, likely driven by microenvironmental priming. In conclusion, CENCAT offers valuable insights into immune cell metabolic responses, presenting a powerful platform for studying cellular metabolism in complex samples and tissues in both humans and mice.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Britta Naus
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lisa Smeehuijzen
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Julia I P van Heck
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bob J Ignacio
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Djakovic L, Hennig T, Reinisch K, Milić A, Whisnant AW, Wolf K, Weiß E, Haas T, Grothey A, Jürges CS, Kluge M, Wolf E, Erhard F, Friedel CC, Dölken L. The HSV-1 ICP22 protein selectively impairs histone repositioning upon Pol II transcription downstream of genes. Nat Commun 2023; 14:4591. [PMID: 37524699 PMCID: PMC10390501 DOI: 10.1038/s41467-023-40217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.
Collapse
Affiliation(s)
- Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Katharina Reinisch
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Andrea Milić
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Katharina Wolf
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Elena Weiß
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Tobias Haas
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Christopher S Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Mildred Scheel Early Career Center, University of Würzburg, Beethovenstraße 1A, 97080, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany.
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Charman M, Grams N, Kumar N, Halko E, Dybas JM, Abbott A, Lum KK, Blumenthal D, Tsopurashvili E, Weitzman MD. A viral biomolecular condensate coordinates assembly of progeny particles. Nature 2023; 616:332-338. [PMID: 37020020 DOI: 10.1038/s41586-023-05887-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2023] [Indexed: 04/07/2023]
Abstract
Biomolecular condensates formed by phase separation can compartmentalize and regulate cellular processes1,2. Emerging evidence has suggested that membraneless subcellular compartments in virus-infected cells form by phase separation3-8. Although linked to several viral processes3-5,9,10, evidence that phase separation contributes functionally to the assembly of progeny particles in infected cells is lacking. Here we show that phase separation of the human adenovirus 52-kDa protein has a critical role in the coordinated assembly of infectious progeny particles. We demonstrate that the 52-kDa protein is essential for the organization of viral structural proteins into biomolecular condensates. This organization regulates viral assembly such that capsid assembly is coordinated with the provision of viral genomes needed to produce complete packaged particles. We show that this function is governed by the molecular grammar of an intrinsically disordered region of the 52-kDa protein, and that failure to form condensates or to recruit viral factors that are critical for assembly results in failed packaging and assembly of only non-infectious particles. Our findings identify essential requirements for coordinated assembly of progeny particles and demonstrate that phase separation of a viral protein is critical for production of infectious progeny during adenovirus infection.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Namrata Kumar
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edwin Halko
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph M Dybas
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amber Abbott
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Krystal K Lum
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel Blumenthal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Cell Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Matthew D Weitzman
- Division of Protective Immunity, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Aicher SM. Bioorthogonal Labelling of African Swine Fever Virus-Infected Cells. Methods Mol Biol 2022; 2503:195-204. [PMID: 35575897 DOI: 10.1007/978-1-0716-2333-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioorthogonal labelling of living cells enables the incorporation of small, chemically inert units (alkynes or azides) into nascent chains of biomolecules allowing the tracking of DNA synthesis, transcription, and translation in a temporal-spatial manner without compromising their integrity. This chemical labelling method can be used to replace traditional radiolabelled nucleosides, ribonucleosides, or amino acids with the added benefit of enabling visualization using confocal or super-resolution microscopy. Here, we outline our recently published methods for labelling nascent DNA and polypeptides in cells infected with African swine fever virus.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur, UMR3569 CNRS, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
5
|
Lv S, Song Q, Chen G, Cheng E, Chen W, Cole R, Wu Z, Pascal LE, Wang K, Wipf P, Nelson JB, Wei Q, Huang W, Wang Z. Regulation and targeting of androgen receptor nuclear localization in castration-resistant prostate cancer. J Clin Invest 2021; 131:141335. [PMID: 33332287 DOI: 10.1172/jci141335] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear localization of the androgen receptor (AR) is necessary for its activation as a transcription factor. Defining the mechanisms regulating AR nuclear localization in androgen-sensitive cells and how these mechanisms are dysregulated in castration-resistant prostate cancer (CRPC) cells is fundamentally important and clinically relevant. According to the classical model of AR intracellular trafficking, androgens induce AR nuclear import and androgen withdrawal causes AR nuclear export. The present study has led to an updated model that AR could be imported in the absence of androgens, ubiquitinated, and degraded in the nucleus. Androgen withdrawal caused nuclear AR degradation, but not export. In comparison with their parental androgen-sensitive LNCaP prostate cancer cells, castration-resistant C4-2 cells exhibited reduced nuclear AR polyubiquitination and increased nuclear AR level. We previously identified 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) in a high-throughput screen for its inhibition of androgen-independent AR nuclear localization in CRPC cells. The current study shows that CPPI is a competitive AR antagonist capable of enhancing AR interaction with its E3 ligase MDM2 and degradation of AR in the nuclei of CRPC cells. Also, CPPI blocked androgen-independent AR nuclear import. Overall, these findings suggest the feasibility of targeting androgen-independent AR nuclear import and stabilization, two necessary steps leading to AR nuclear localization and activation in CRPC cells, with small molecule inhibitors.
Collapse
Affiliation(s)
- Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, and.,National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Key Laboratory of Longevity and Ageing Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guang Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Erdong Cheng
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ke Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Peter Wipf
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, and
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Aicher SM, Monaghan P, Netherton CL, Hawes PC. Unpicking the Secrets of African Swine Fever Viral Replication Sites. Viruses 2021; 13:v13010077. [PMID: 33429879 PMCID: PMC7827680 DOI: 10.3390/v13010077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is a highly contagious pathogen which causes a lethal haemorrhagic fever in domestic pigs and wild boar. The large, double-stranded DNA virus replicates in perinuclear cytoplasmic replication sites known as viral factories. These factories are complex, multi-dimensional structures. Here we investigated the protein and membrane compartments of the factory using super-resolution and electron tomography. Click IT chemistry in combination with stimulated emission depletion (STED) microscopy revealed a reticular network of newly synthesized viral proteins, including the structural proteins p54 and p34, previously seen as a pleomorphic ribbon by confocal microscopy. Electron microscopy and tomography confirmed that this network is an accumulation of membrane assembly intermediates which take several forms. At early time points in the factory formation, these intermediates present as small, individual membrane fragments which appear to grow and link together, in a continuous progression towards new, icosahedral virions. It remains unknown how these membranes form and how they traffic to the factory during virus morphogenesis.
Collapse
Affiliation(s)
- Sophie-Marie Aicher
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Paul Monaghan
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Christopher L. Netherton
- African Swine Fever Vaccinology Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; (S.-M.A.); (C.L.N.)
| | - Philippa C. Hawes
- Bioimaging, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK;
- Correspondence:
| |
Collapse
|
7
|
Besic V, Habibolahi F, Noël B, Rupp S, Genovesio A, Lebreton A. Coordination of transcriptional and translational regulations in human epithelial cells infected by Listeria monocytogenes. RNA Biol 2020; 17:1492-1507. [PMID: 32584699 PMCID: PMC7549700 DOI: 10.1080/15476286.2020.1777380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The invasion of mammalian cells by intracellular bacterial pathogens reshuffles their gene expression and functions; however, we lack dynamic insight into the distinct control levels that shape the host response. Here, we have addressed the respective contribution of transcriptional and translational regulations during a time-course of infection of human intestinal epithelial cells by an epidemic strain of Listeria monocytogenes, using transcriptome analysis paralleled with ribosome profiling. Upregulations were dominated by early transcriptional activation of pro-inflammatory genes, whereas translation inhibition appeared as the major driver of downregulations. Instead of a widespread but transient shutoff, translation inhibition affected specifically and durably transcripts encoding components of the translation machinery harbouring a 5'-terminal oligopyrimidine motif. Pre-silencing the most repressed target gene (PABPC1) slowed down the intracellular multiplication of Listeria monocytogenes, suggesting that the infected host cell can benefit from the repression of genes involved in protein synthesis and thereby better control infection.
Collapse
Affiliation(s)
- Vinko Besic
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fatemeh Habibolahi
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benoît Noël
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sebastian Rupp
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Auguste Genovesio
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alice Lebreton
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
| |
Collapse
|
8
|
The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J Virol 2020; 94:JVI.01564-19. [PMID: 31748398 DOI: 10.1128/jvi.01564-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.
Collapse
|
9
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
10
|
Li Y, Wu Y, Wang M, Ma Y, Jia R, Chen S, Zhu D, Liu M, Yang Q, Zhao X, Zhang S, Huang J, Ou X, Mao S, Zhang L, Liu Y, Yu Y, Pan L, Tian B, Rehman MU, Chen X, Cheng A. Duplicate US1 Genes of Duck Enteritis Virus Encode a Non-essential Immediate Early Protein Localized to the Nucleus. Front Cell Infect Microbiol 2020; 9:463. [PMID: 32010642 PMCID: PMC6979402 DOI: 10.3389/fcimb.2019.00463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
The duplicate US1 genes of duck enteritis virus (DEV) encode a protein with a conserved Herpes_IE68 domain, which was found to be closely related to the herpes virus immediate early regulatory protein family and is highly conserved among counterparts encoded by Herpes_IE68 genes. Previous studies found the homologous proteins HSV-1 ICP22 and VZV ORF63/ORF70 to be critical for virus transcription and replication. However, little is known about the DEV ICP22 protein. In this paper, we describe the characteristics of this protein based on pharmacological experiments, real-time quantitative Polymerase Chain Reaction, Western blot, and immunofluorescence assays. We also investigate the role of the protein in DEV replication via mutation of US1. As a result, we found that the DEV ICP22 protein is a non-essential immediate early protein predominantly located in the nucleus of infected DEF cells and that DEV replication is impaired by US1 deletion. We also found that ICP22 contains a classical nuclear localization signal (NLS) at 305-312AA, and ICP22 cannot enter the nucleus by itself after mutating residue 309.
Collapse
Affiliation(s)
- Yangguang Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - YunChao Ma
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
11
|
Serwa RA, Sekine E, Brown J, Teo SHC, Tate EW, O’Hare P. Analysis of a fully infectious bio-orthogonally modified human virus reveals novel features of virus cell entry. PLoS Pathog 2019; 15:e1007956. [PMID: 31589653 PMCID: PMC6797222 DOI: 10.1371/journal.ppat.1007956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022] Open
Abstract
We report the analysis of a complex enveloped human virus, herpes simplex virus (HSV), assembled after in vivo incorporation of bio-orthogonal methionine analogues homopropargylglycine (HPG) or azidohomoalanine (AHA). We optimised protocols for the production of virions incorporating AHA (termed HSVAHA), identifying conditions which resulted in normal yields of HSV and normal particle/pfu ratios. Moreover we show that essentially every single HSVAHA capsid-containing particle was detectable at the individual particle level by chemical ligation of azide-linked fluorochromes to AHA-containing structural proteins. This was a completely specific chemical ligation, with no capsids assembled under normal methionine-containing conditions detected in parallel. We demonstrate by quantitative mass spectrometric analysis that HSVAHA virions exhibit no qualitative or quantitative differences in the repertoires of structural proteins compared to virions assembled under normal conditions. Individual proteins and AHA incorporation sites were identified in capsid, tegument and envelope compartments, including major essential structural proteins. Finally we reveal novel aspects of entry pathways using HSVAHA and chemical fluorochrome ligation that were not apparent from conventional immunofluorescence. Since ligation targets total AHA-containing protein and peptides, our results demonstrate the presence of abundant AHA-labelled products in cytoplasmic macrodomains and tubules which no longer contain intact particles detectable by immunofluorescence. Although these do not co-localise with lysosomal markers, we propose they may represent sites of proteolytic virion processing. Analysis of HSVAHA also enabled the discrimination from primary entering from secondary assembling virions, demonstrating assembly and second round infection within 6 hrs of initial infection and dual infections of primary and secondary virus in spatially restricted cytoplasmic areas of the same cell. Together with other demonstrated applications e.g., in genome biology, lipid and protein trafficking, this work further exemplifies the utility and potential of bio-orthogonal chemistry for studies in many aspects of virus-host interactions.
Collapse
Affiliation(s)
- Remigiusz A. Serwa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, London, United Kingdom
| | - Eiki Sekine
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Brown
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Su Hui Catherine Teo
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Lee KJ, Kang D, Park HS. Site-Specific Labeling of Proteins Using Unnatural Amino Acids. Mol Cells 2019; 42:386-396. [PMID: 31122001 PMCID: PMC6537655 DOI: 10.14348/molcells.2019.0078] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Deokhee Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
13
|
Ouyang T, Liu X, Ouyang H, Ren L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Res 2018; 256:21-28. [PMID: 30081058 PMCID: PMC7173221 DOI: 10.1016/j.virusres.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Click chemistry involves reactions that were originally introduced and used in organic chemistry to generate substances by joining small units together with heteroatom linkages (C-X-C). Over the last few decades, click chemistry has been widely used in virus-related research. Using click chemistry, the virus particle as well as viral protein and nucleic acids can be labeled. Subsequently, the labeled virions or molecules can be tracked in real time. Here, we reviewed the recent applications of click reactions in virus-related research, including viral tracking, the design of antiviral agents, the diagnosis of viral infection, and virus-based delivery systems. This review provides an overview of the general principles and applications of click chemistry in virus-related research.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Xiaohui Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
14
|
Teo CSH, O’Hare P. A bimodal switch in global protein translation coupled to eIF4H relocalisation during advancing cell-cell transmission of herpes simplex virus. PLoS Pathog 2018; 14:e1007196. [PMID: 30028874 PMCID: PMC6070287 DOI: 10.1371/journal.ppat.1007196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022] Open
Abstract
We used the bioorthogonal protein precursor, homopropargylglycine (HPG) and chemical ligation to fluorescent capture agents, to define spatiotemporal regulation of global translation during herpes simplex virus (HSV) cell-to-cell spread at single cell resolution. Translational activity was spatially stratified during advancing infection, with distal uninfected cells showing normal levels of translation, surrounding zones at the earliest stages of infection with profound global shutoff. These cells further surround previously infected cells with restored translation close to levels in uninfected cells, reflecting a very early biphasic switch in translational control. While this process was dependent on the virion host shutoff (vhs) function, in certain cell types we also observed temporally altered efficiency of shutoff whereby during early transmission, naïve cells initially exhibited resistance to shutoff but as infection advanced, naïve target cells succumbed to more extensive translational suppression. This may reflect spatiotemporal variation in the balance of oscillating suppression-recovery phases. Our results also strongly indicate that a single particle of HSV-2, can promote pronounced global shutoff. We also demonstrate that the vhs interacting factor, eIF4H, an RNA helicase accessory factor, switches from cytoplasmic to nuclear localisation precisely correlating with the initial shutdown of translation. However translational recovery occurs despite sustained eIF4H nuclear accumulation, indicating a qualitative change in the translational apparatus before and after suppression. Modelling simulations of high multiplicity infection reveal limitations in assessing translational activity due to sampling frequency in population studies and how analysis at the single cell level overcomes such limitations. The work reveals new insight and a revised model of translational manipulation during advancing infection which has important implications both mechanistically and with regards to the physiological role of translational control during virus propagation. The work also demonstrates the potential of bioorthogonal chemistry for single cell analysis of cellular metabolic processes during advancing infections in other virus systems.
Collapse
Affiliation(s)
- Catherine Su Hui Teo
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Faculty of Medicine, Imperial College London, St Mary’s Medical School, London, United Kingdom
| |
Collapse
|
15
|
Meng W, Han SC, Li CC, Dong HJ, Wang XJ. Multifunctional viral protein γ34.5 manipulates nucleolar protein NOP53 for optimal viral replication of HSV-1. Cell Death Dis 2018; 9:103. [PMID: 29367603 PMCID: PMC5833762 DOI: 10.1038/s41419-017-0116-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022]
Abstract
To ensure efficient virus replication, herpes simplex virus type 1 (HSV-1) encodes several viral proteins to counter host defense response upon infection. Among these proteins, the multifunctional viral protein γ34.5 crucially interferes with or disrupts several antiviral pathways at multiple levels. The current study shows that γ34.5 utilizes nucleolar protein NOP53 to facilitate the dephosphorylation of eukaryotic initiation factor eIF2α for efficient viral translation. Our study shows that: (1) ectopic expression of NOP53 greatly increases the intracellular and extracellular viral yields of HSV-1 (wild strain F) in type I interferon-deficient Vero cells, and more subtly promotes viral replication of γ34.5 deletion mutant virus HSV-1/Δγ34.5. (2) NOP53 is migrated from nuclei in HSV-1/F infected cells, but is redistributed incompletely after infection by either HSV-1/Δγ34.5 or ICP4 deletion mutant virus HSV-1/d120 (replication inadequate). Ectopic expression of γ34.5, consequently, induces cytoplasmic translocation of NOP53 in response to HSV-1/Δγ34.5 infection. (3) Increase of NOP53, in two forms of transient transfection and in vitro expression, attenuates the phosphorylation level of eIF2α in HSV-1/F infected cells, but fails to affect eIF2α phosphorylation induced by HSV-1/Δγ34.5 infection. (4) Knockdown of NOP53, which impairs the specific interaction between γ34.5 and protein phosphatase PP1α, disrupts the ability of γ34.5 to maintain HSV-1 virulence. (5) NOP53 knockdown also significantly reduces tissue damage and decreases viral yield in livers of HSV-1 infected mice. Our findings expand the understanding of the underlying mechanism by which viral protein γ34.5 induces NOP53 redistribution; cytoplasmic NOP53 facilitates γ34.5 recruitment of PP1α to dephosphorylate eIF2α, for optimal viral replication. This paper also demonstrates that blocking the specific interaction between γ34.5 and PP1α would be a useful approach for the development of antiviral agents.
Collapse
Affiliation(s)
- Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Shi-Chong Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
16
|
DeLigio JT, Lin G, Chalfant CE, Park MA. Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially regulate pathways linked to cancer metastasis. J Biol Chem 2017; 292:17909-17918. [PMID: 28904175 DOI: 10.1074/jbc.m117.810127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
The translational regulator cytosolic polyadenylation element-binding protein 2 (CPEB2) has two isoforms, CPEB2A and CPEB2B, derived by alternative splicing of RNA into a mature form that either includes or excludes exon 4. Previously, we reported that this splicing event is highly dysregulated in aggressive forms of breast cancers, which overexpress CPEB2B. The loss of CPEB2A with a concomitant increase in CPEB2B was also required for breast cancer cells to resist cell death because of detachment (anoikis resistance) and metastasize in vivo To examine the mechanism by which CPEB2 isoforms mediate opposing effects on cancer-related phenotypes, we used next generation sequencing of triple negative breast cancer cells in which the isoforms were specifically down-regulated. Down-regulation of the CPEB2B isoform inhibited pathways driving the epithelial-to-mesenchymal transition and hypoxic response, whereas down-regulation of the CPEB2A isoform did not have this effect. Examining key nodes of these pathways showed that CPEB2B induced the expression of regulatory DNA trans-factors (e.g. HIF1α and TWIST1). Specifically, CPEB2B functioned as a translational activator of TWIST1 and HIF1α. Functional studies showed that specific down-regulation of either HIF1α or TWIST1 inhibited the ability of CPEB2B to induce the acquisition of anoikis resistance and drive metastasis. Overall, this study demonstrates that CPEB2 alternative splicing is a major regulator of key cellular pathways linked to anoikis resistance and metastasis.
Collapse
Affiliation(s)
- James T DeLigio
- From the Department of Biochemistry and Molecular Biology and
| | - Grace Lin
- From the Department of Biochemistry and Molecular Biology and
| | - Charles E Chalfant
- From the Department of Biochemistry and Molecular Biology and .,VCU Massey Cancer Center Cancer Cell Signaling Program, Virginia Commonwealth University (VCU), Richmond, Virginia 23298.,Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia 23249.,VCU Institute of Molecular Medicine, Richmond, Virginia 23298.,VCU Johnson Center for Critical Care and Pulmonary Research, Richmond, Virginia 23298.,Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, and.,The Moffitt Cancer Center, Tampa, Florida 33612
| | - Margaret A Park
- From the Department of Biochemistry and Molecular Biology and .,VCU Massey Cancer Center Cancer Cell Signaling Program, Virginia Commonwealth University (VCU), Richmond, Virginia 23298.,Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, Virginia 23249.,Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida 33620.,Research Service, James A. Haley Veterans Hospital, Tampa, Florida 33612, and
| |
Collapse
|
17
|
Abstract
Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription.
Collapse
|