1
|
Sosnovtseva AO, Demidova NA, Klimova RR, Kovalev MA, Kushch AA, Starodubova ES, Latanova AA, Karpov DS. Control of HSV-1 Infection: Directions for the Development of CRISPR/Cas-Based Therapeutics and Diagnostics. Int J Mol Sci 2024; 25:12346. [PMID: 39596412 PMCID: PMC11595115 DOI: 10.3390/ijms252212346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
It is estimated that nearly all individuals have been infected with herpesviruses, with herpes simplex virus type 1 (HSV-1) representing the most prevalent virus. In most cases, HSV-1 causes non-life-threatening skin damage in adults. However, in patients with compromised immune systems, it can cause serious diseases, including death. The situation is further complicated by the emergence of strains that are resistant to both traditional and novel antiviral drugs. It is, therefore, imperative that new methods of combating HSV-1 and other herpesviruses be developed without delay. CRISPR/Cas systems may prove an effective means of controlling herpesvirus infections. This review presents the current understanding of the underlying molecular mechanisms of HSV-1 infection and discusses four potential applications of CRISPR/Cas systems in the fight against HSV-1 infections. These include the search for viral and cellular genes that may serve as effective targets, the optimization of anti-HSV-1 activity of CRISPR/Cas systems in vivo, the development of CRISPR/Cas-based HSV-1 diagnostics, and the validation of HSV-1 drug resistance mutations.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Natalia A. Demidova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
| | - Alla A. Kushch
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Elizaveta S. Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia A. Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
2
|
Moschonas GD, Delhaye L, Cooreman R, Hüsers F, Bhat A, Stylianidou Z, De Bousser E, De Pryck L, Grzesik H, De Sutter D, Parthoens E, De Smet AS, Maciejczuk A, Lippens S, Callewaert N, Vandekerckhove L, Debyser Z, Sodeik B, Eyckerman S, Saelens X. MX2 forms nucleoporin-comprising cytoplasmic biomolecular condensates that lure viral capsids. Cell Host Microbe 2024; 32:1705-1724.e14. [PMID: 39389033 DOI: 10.1016/j.chom.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Human myxovirus resistance 2 (MX2) can restrict HIV-1 and herpesviruses at a post-entry step through a process requiring an interaction between MX2 and the viral capsids. The involvement of other host cell factors, however, remains poorly understood. Here, we mapped the proximity interactome of MX2, revealing strong enrichment of phenylalanine-glycine (FG)-rich proteins related to the nuclear pore complex as well as proteins that are part of cytoplasmic ribonucleoprotein granules. MX2 interacted with these proteins to form multiprotein cytoplasmic biomolecular condensates that were essential for its anti-HIV-1 and anti-herpes simplex virus 1 (HSV-1) activity. MX2 condensate formation required the disordered N-terminal region and MX2 dimerization. Incoming HIV-1 and HSV-1 capsids associated with MX2 at these dynamic cytoplasmic biomolecular condensates, preventing nuclear entry of their viral genomes. Thus, MX2 forms cytoplasmic condensates that likely act as nuclear pore decoys, trapping capsids and inducing premature viral genome release to interfere with nuclear targeting of HIV-1 and HSV-1.
Collapse
Affiliation(s)
- George D Moschonas
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Louis Delhaye
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Robin Cooreman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Franziska Hüsers
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anayat Bhat
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zoe Stylianidou
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elien De Bousser
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laure De Pryck
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanna Grzesik
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Eef Parthoens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Anne-Sophie De Smet
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Aleksandra Maciejczuk
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; DZIF-German Centre for Infection Research, Partner site Hannover-Braunschweig, Germany
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
3
|
Zeitvogel J, Döhner K, Klug I, Rademacher F, Gläser R, Sodeik B, Harder J, Werfel T. The antimicrobial protein RNase 7 directly restricts herpes simplex virus infection of human keratinocytes. J Med Virol 2024; 96:e29942. [PMID: 39360648 DOI: 10.1002/jmv.29942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Approximately 22% of moderately to severely affected atopic dermatitis (AD) patients have a history of eczema herpeticum, a disseminated rash primarily caused by herpes simplex virus type 1 (HSV-1). Reduced activity of antimicrobial peptides may contribute to the increased susceptibility of AD patients to HSV-1. We previously demonstrated that the antimicrobial protein RNase 7 limits HSV-1 infection of human keratinocytes by promoting self-DNA sensing. Here, we addressed whether RNase 7 has any effect on HSV-1 infection when infecting keratinocytes without exogenously added costimulatory DNA, and which step(s) of the infection cycle RNase 7 interferes with. We quantified viral gene expression by RT-qPCR and flow cytometry, viral genome replication by qPCR, virucidal effects by plaque titration, and plaque formation and the subcellular localization of incoming HSV-1 particles by microscopy. Recombinant RNase 7 restricted HSV-1 gene expression, genome replication, and plaque formation in human keratinocytes. It decreased HSV-1 immediate-early transcripts independently of the induction of interferon-stimulated genes. Its main effect was on intracellular infection processes and not on extracellular virions or virus binding to cells. RNase 7 reduced the amount of cell-associated capsids and the HSV-1 envelope glycoprotein D at 3 but not at 0.5 h postinfection. Our data show that RNase 7 directly restricts HSV-1 infection of human keratinocytes, possibly by promoting the degradation of incoming HSV-1 particles. This suggests that RNase 7 may limit HSV-1 spread in the skin and that mechanisms that reduce its activity in the lesional skin of AD patients may increase their susceptibility to eczema herpeticum.
Collapse
Affiliation(s)
- Jana Zeitvogel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ilona Klug
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | | | - Regine Gläser
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Beate Sodeik
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Döhner K, Serrero MC, Viejo-Borbolla A, Sodeik B. A Hitchhiker's Guide Through the Cell: The World According to the Capsids of Alphaherpesviruses. Annu Rev Virol 2024; 11:215-238. [PMID: 38954634 DOI: 10.1146/annurev-virology-100422-022751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The nucleoplasm, the cytosol, the inside of virions, and again the cytosol comprise the world in which the capsids of alphaherpesviruses encounter viral and host proteins that support or limit them in performing their tasks. Here, we review the fascinating conundrum of how specific protein-protein interactions late in alphaherpesvirus infection orchestrate capsid nuclear assembly, nuclear egress, and cytoplasmic envelopment, but target incoming capsids to the nuclear pores in naive cells to inject the viral genomes into the nucleoplasm for viral transcription and replication. Multiple capsid interactions with viral and host proteins have been characterized using viral mutants and assays that reconstitute key stages of the infection cycle. Keratinocytes, fibroblasts, mucosal epithelial cells, neurons, and immune cells employ cell type-specific intrinsic and cytokine-induced resistance mechanisms to restrict several stages of the viral infection cycle. However, concomitantly, alphaherpesviruses have evolved countermeasures to ensure efficient capsid function during infection.
Collapse
Affiliation(s)
- Katinka Döhner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Manutea Christophe Serrero
- Department of Biomedicine and Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Abel Viejo-Borbolla
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| | - Beate Sodeik
- DZIF German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
- RESIST Cluster of Excellence, Hannover Medical School, Hannover, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
5
|
Dai Y, Idorn M, Serrero MC, Pan X, Thomsen EA, Narita R, Maimaitili M, Qian X, Iversen MB, Reinert LS, Flygaard RK, Chen M, Ding X, Zhang BC, Carter-Timofte ME, Lu Q, Jiang Z, Zhong Y, Zhang S, Da L, Zhu J, Denham M, Nissen P, Mogensen TH, Mikkelsen JG, Zhang SY, Casanova JL, Cai Y, Paludan SR. TMEFF1 is a neuron-specific restriction factor for herpes simplex virus. Nature 2024; 632:383-389. [PMID: 39048823 DOI: 10.1038/s41586-024-07670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.
Collapse
Affiliation(s)
- Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Xiaoyong Pan
- Key Laboratory of System Control and Information Processing (Ministry of Education), Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Emil A Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Muyesier Maimaitili
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Rasmus K Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Muwan Chen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Xiangning Ding
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Madalina E Carter-Timofte
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinwei Zhu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Mark Denham
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Immunology of Viral Infections, Aarhus, Denmark
| | - Shen-Ying Zhang
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Center for Immunology of Viral Infections, Aarhus, Denmark.
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
6
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
7
|
Gao X, Xuan Y, Zhou Z, Chen C, Wen Wang D, Wen Z. Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65. Int Immunopharmacol 2024; 133:112073. [PMID: 38636372 DOI: 10.1016/j.intimp.2024.112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/β-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS Increased expression of importin β was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1β/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.
Collapse
Affiliation(s)
- Xu Gao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Yunling Xuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
8
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Cross EM, Akbari N, Ghassabian H, Hoad M, Pavan S, Ariawan D, Donnelly CM, Lavezzo E, Petersen GF, Forwood JK, Alvisi G. A functional and structural comparative analysis of large tumor antigens reveals evolution of different importin α-dependent nuclear localization signals. Protein Sci 2024; 33:e4876. [PMID: 38108201 PMCID: PMC10807245 DOI: 10.1002/pro.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPβ1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.
Collapse
Affiliation(s)
- Emily M. Cross
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUnited Kingdom
| | - Nasim Akbari
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Mikayla Hoad
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Silvia Pavan
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Daryl Ariawan
- Dementia Research CentreMacquarie UniversitySydneyAustralia
| | - Camilla M. Donnelly
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Enrico Lavezzo
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Jade K. Forwood
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
| | | |
Collapse
|
10
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. Nat Commun 2024; 15:250. [PMID: 38177118 PMCID: PMC10767040 DOI: 10.1038/s41467-023-44596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We use electron cryomicroscopy to determine a 3.2 Å helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a distinct protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism shows that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Coby Y Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Tran H Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Tan WS, Rong E, Dry I, Lillico SG, Law A, Digard P, Whitelaw B, Dalziel RG. GARP and EARP are required for efficient BoHV-1 replication as identified by a genome wide CRISPR knockout screen. PLoS Pathog 2023; 19:e1011822. [PMID: 38055775 PMCID: PMC10727446 DOI: 10.1371/journal.ppat.1011822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
The advances in gene editing bring unprecedented opportunities in high throughput functional genomics to animal research. Here we describe a genome wide CRISPR knockout library, btCRISPRko.v1, targeting all protein coding genes in the cattle genome. Using it, we conducted genome wide screens during Bovine Herpes Virus type 1 (BoHV-1) replication and compiled a list of pro-viral and anti-viral candidates. These candidates might influence multiple aspects of BoHV-1 biology such as viral entry, genome replication and transcription, viral protein trafficking and virion maturation in the cytoplasm. Some of the most intriguing examples are VPS51, VPS52 and VPS53 that code for subunits of two membrane tethering complexes, the endosome-associated recycling protein (EARP) complex and the Golgi-associated retrograde protein (GARP) complex. These complexes mediate endosomal recycling and retrograde trafficking to the trans Golgi Network (TGN). Simultaneous loss of both complexes in MDBKs resulted in greatly reduced production of infectious BoHV-1 virions. We also found that viruses released by these deficient cells severely lack VP8, the most abundant tegument protein of BoHV-1 that are crucial for its virulence. In combination with previous reports, our data suggest vital roles GARP and EARP play during viral protein packaging and capsid re-envelopment in the cytoplasm. It also contributes to evidence that both the TGN and the recycling endosomes are recruited in this process, mediated by these complexes. The btCRISPRko.v1 library generated here has been controlled for quality and shown to be effective in host gene discovery. We hope it will facilitate efforts in the study of other pathogens and various aspects of cell biology in cattle.
Collapse
Affiliation(s)
- Wenfang S. Tan
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Enguang Rong
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Inga Dry
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Simon G. Lillico
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andy Law
- Division of Genetics and Genomics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Paul Digard
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Robert G. Dalziel
- Division of Infection and Immunity, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
12
|
Betancur-Galvis L, Jimenez-Jarava OJ, Rivas F, Mendoza-Hernández WE, González-Cardenete MA. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2-yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals (Basel) 2023; 16:1602. [PMID: 38004467 PMCID: PMC10674234 DOI: 10.3390/ph16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Combining antiviral drugs with different mechanisms of action can help prevent the development of resistance by attacking the infectious agent through multiple pathways. Additionally, by using faster and more economical screening methods, effective synergistic drug candidates can be rapidly identified, facilitating faster paths to clinical testing. In this work, a rapid method was standardized to identify possible synergisms from drug combinations. We analyzed the possible reduction in the antiviral effective concentration of drugs already approved by the FDA, such as ivermectin (IVM), ribavirin (RIBA), and acyclovir (ACV) against Zika virus (ZIKV), Chikungunya virus (CHIKV), and herpes virus type 2 (HHV-2). Essential oils (EOs) were also included in the study since they have been reported for more than a couple of decades to have broad-spectrum antiviral activity. We also continued studying the antiviral properties of one of our patented molecules with broad-spectrum antiviral activity, the ferruginol analog 18-(phthalimid-2-yl)ferruginol (phthFGL), which presented an IC99 of 25.6 μM for the three types of virus. In general, the combination of IVM, phthFGL, and oregano EO showed the greatest synergism potential against CHIKV, ZIKV, and HHV-2. For instance, this combination achieved reductions in the IC99 value of each component up to ~8-, ~27-, and ~12-fold for CHIKV, respectively. The ternary combination of RIBA, phthFGL, and oregano EO was slightly more efficient than the binary combination RIBA/phthFGL but much less efficient than IVM, phthFGL, and oregano EO, which indicates that IVM could contribute more to the differentiation of cell targets (for example via the inhibition of the host heterodimeric importin IMP α/β1 complex) than ribavirin. Statistical analysis showed significant differences among the combination groups tested, especially in the HHV-2 and CHIKV models, with p = 0.0098. Additionally, phthFGL showed a good pharmacokinetic profile that should encourage future optimization studies.
Collapse
Affiliation(s)
- Liliana Betancur-Galvis
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Orlando José Jimenez-Jarava
- Grupo GRID—Grupo de Investigaciones Dermatológicas, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Chopping Hall, Baton Rouge, LA 70803, USA;
| | - William E. Mendoza-Hernández
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| | - Miguel A. González-Cardenete
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain;
| |
Collapse
|
13
|
Benning FMC, Jenni S, Garcia CY, Nguyen TH, Zhang X, Chao LH. Helical reconstruction of VP39 reveals principles for baculovirus nucleocapsid assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545104. [PMID: 37398449 PMCID: PMC10312762 DOI: 10.1101/2023.06.15.545104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Baculoviruses are insect-infecting pathogens with wide applications as biological pesticides, in vitro protein production vehicles and gene therapy tools. Its cylindrical nucleocapsid, which encapsulates and protects the circular double-stranded viral DNA encoding proteins for viral replication and entry, is formed by the highly conserved major capsid protein VP39. The mechanism for VP39 assembly remains unknown. We determined a 3.2 Å electron cryomicroscopy helical reconstruction of an infectious nucleocapsid of Autographa californica multiple nucleopolyhedrovirus, revealing how dimers of VP39 assemble into a 14-stranded helical tube. We show that VP39 comprises a unique protein fold conserved across baculoviruses, which includes a Zinc finger domain and a stabilizing intra-dimer sling. Analysis of sample polymorphism revealed that VP39 assembles in several closely-related helical geometries. This VP39 reconstruction reveals general principles for baculoviral nucleocapsid assembly.
Collapse
Affiliation(s)
- Friederike M. C. Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Coby Y. Garcia
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Tran H. Nguyen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuewu Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
15
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Baculovirus Display of Peptides and Proteins for Medical Applications. Viruses 2023; 15:v15020411. [PMID: 36851625 PMCID: PMC9962271 DOI: 10.3390/v15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.
Collapse
|
17
|
Kazmierski J, Elsner C, Döhner K, Xu S, Ducroux A, Pott F, Jansen J, Thorball CW, Zeymer O, Zhou X, Fedorov R, Fellay J, Löffler MW, Weber ANR, Sodeik B, Goffinet C. A Baseline Cellular Antiviral State Is Maintained by cGAS and Its Most Frequent Naturally Occurring Variant rs610913. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:535-547. [PMID: 35851540 DOI: 10.4049/jimmunol.2100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/13/2022] [Indexed: 10/17/2023]
Abstract
Upon recognition of aberrantly located DNA, the innate immune sensor cyclic GMP-AMP synthase (cGAS) activates stimulator of IFN genes (STING)/IFN regulatory factor (IRF)3-driven antiviral responses. In this study, we characterized the ability of a specific variant of the human cGAS-encoding gene MB21D1, rs610913, to alter cGAS-mediated DNA sensing and viral infection. rs610913 is a frequent G>T polymorphism resulting in a P261H exchange in the cGAS protein. Data from the International Collaboration for the Genomics of HIV suggested that rs610913 nominally associates with HIV-1 acquisition in vivo. Molecular modeling of cGAS(P261H) hinted toward the possibility for an additional binding site for a potential cellular cofactor in cGAS dimers. However, cGAS(wild-type [WT]) or cGAS(P261H)-reconstituted THP-1 cGAS knockout cells shared steady-state expression of IFN-stimulated genes, as opposed to cells expressing the enzymatically inactive cGAS(G212A/S213A). Accordingly, cGAS(WT) and cGAS(P261H) cells were less susceptible to lentiviral transduction and infection with HIV-1, HSV-1, and Chikungunya virus as compared with cGAS knockout or cGAS(G212A/S213A) cells. Upon DNA challenge, innate immune activation appeared to be mildly reduced upon expression of cGAS(P261H) compared with cGAS(WT). Finally, DNA challenge of PBMCs from donors homozygously expressing rs610913 provoked a trend toward a slightly reduced type I IFN response as compared with PBMCs from GG donors. Taken together, the steady-state activity of cGAS maintains a baseline antiviral state rendering cells more refractory to IFN-stimulated gene-sensitive viral infections. rs610913 failed to grossly differ phenotypically from the WT gene, suggesting that cGAS(P261H) and WT cGAS share a similar ability to sense viral infections in vivo.
Collapse
Affiliation(s)
- Julia Kazmierski
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Carina Elsner
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Shuting Xu
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Aurélie Ducroux
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ole Zeymer
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Xiaoyi Zhou
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Research Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Markus W Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
- CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany; and
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Partner Site, Hannover, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection Research, a Joint Venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
18
|
Wang Q, Wang Z, Zhang J, Zhang Q, Zheng M, Wen J, Zhao G, Li Q. Dual RNA-Seq of H5N1 Avian Influenza Virus and Host Cell Transcriptomes Reveals Novel Insights Into Host-Pathogen Cross Talk. Front Microbiol 2022; 13:828277. [PMID: 35495687 PMCID: PMC9039741 DOI: 10.3389/fmicb.2022.828277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
H5N1 avian influenza virus (AIV) is a highly pathogenic influenza virus that poses a substantial threat to poultry production and public health. A comprehensive understanding of host-pathogen interactions for AIV requires knowledge of gene expression changes in both the pathogen and the host upon infection. We report the use of dual RNA sequencing technology to uncover trends in gene expression in H5N1 AIV and chickens (DF1 cells) during the course of infection. The expression of all viral genes increased continuously from 0 to 20 h post infection. We also identified 2,762 differentially expressed host genes during infection. Pathway analysis found that genes related to the signaling pathways of DNA replication, T cell activation, NF-kappa B signaling pathway, and RNA degradation were significantly enriched. We demonstrated that the cis-acting lncRNA MSTRG.14019.1 targeted CSE1L and may affect virus replication. This study provides a more comprehensive and detailed understanding of host-virus interactions at the RNA level during the course of H5N1 AIV infection.
Collapse
Affiliation(s)
- Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Serrero MC, Girault V, Weigang S, Greco TM, Ramos-Nascimento A, Anderson F, Piras A, Hickford Martinez A, Hertzog J, Binz A, Pohlmann A, Prank U, Rehwinkel J, Bauerfeind R, Cristea IM, Pichlmair A, Kochs G, Sodeik B. The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. eLife 2022; 11:e76804. [PMID: 35475759 PMCID: PMC9150894 DOI: 10.7554/elife.76804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.
Collapse
Affiliation(s)
- Manutea C Serrero
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
| | | | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, University of FreiburgFreiburgGermany
| | - Todd M Greco
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | | | - Fenja Anderson
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Antonio Piras
- Institute of Virology, Technical University MunichMunichGermany
| | | | - Jonny Hertzog
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Anne Binz
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| | - Ute Prank
- Institute of Virology, Hannover Medical SchoolHannoverGermany
| | - Jan Rehwinkel
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical SchoolHannoverGermany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Andreas Pichlmair
- Institute of Virology, Technical University MunichMunichGermany
- German Center for Infection Research (DZIF), Munich Partner siteMunichGermany
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, University of FreiburgFreiburgGermany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical SchoolHannoverGermany
- RESIST - Cluster of Excellence, Hannover Medical SchoolHannoverGermany
- German Center for Infection Research (DZIF), Hannover-Braunschweig Partner SiteHannoverGermany
| |
Collapse
|
20
|
Importin alpha 1 is required for the nucleus entry of Fowl Adenovirus serotype 4 Fiber-1 protein. Vet Microbiol 2022; 266:109351. [PMID: 35121306 DOI: 10.1016/j.vetmic.2022.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Fiber-1 protein (F1) is the structural protein of Fowl Adenovirus serotype 4 (FAdV-4), which could recondite the receptors of host cytomembrane. In this study, we firstly determined that F1 protein located in nucleus of LMH cells after infection with FAdV-4. We additionally revealed that F1 protein had a classic NLS, and the NLS was required for F1 nucleus entry, which was intently associated to the 26th Pro in NLS. The time rule result indicated that some F1 proteins firstly positioned in the nucleus 6 h posttranfection, and it entirely located in the nucleus 12 h posttranfection, then it ordinarily placed in cytoplasm 18 h posttranfection by means of microscopic fluorescence observation and Western Blotting. Then after transfection with pCI-neo-flag-F1 or infection with FAdV-4, the importin alpha 1 was once investigated whether or not it was required for F1 protein nucleus entry through immunofluorescence and/or Co-IP, results demonstrated that the F1 protein and importin alpha 1 co-located in the nucleus 6 h and 12 h posttranfection. The tiers of F1 protein vicinity in nucleus have been additionally investigated after knockdown expression or overexpression of importin alpha 1, and the results further revealed that importin alpha 1 used to be required for F1 protein nucleus entry. Finally, the function of F1 protein nucleus entry was investigated by qPCR, RT-PCR and Western Blotting, and the results revealed that F1 protein nucleus location was conducive to the proliferation of FAdV-4. In summary, we firstly reveal that the F1 protein of FAdV-4 locates in nucleus infected with FAdV-4, and confirm that importin alpha 1 binds to the NLS of F1 protein to nucleus localization, which promotes the proliferation of FAdV-4.
Collapse
|
21
|
Naniima P, Naimo E, Koch S, Curth U, Alkharsah KR, Ströh LJ, Binz A, Beneke JM, Vollmer B, Böning H, Borst EM, Desai P, Bohne J, Messerle M, Bauerfeind R, Legrand P, Sodeik B, Schulz TF, Krey T. Assembly of infectious Kaposi's sarcoma-associated herpesvirus progeny requires formation of a pORF19 pentamer. PLoS Biol 2021; 19:e3001423. [PMID: 34735435 PMCID: PMC8568140 DOI: 10.1371/journal.pbio.3001423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its β-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases. In herpesviruses, genome packaging and release from the capsid require a unique portal channel. Here, the authors have resolved the crystal structure of a pentameric KSHV pORF19 assembly and find that it resembles the herpesviral portal cap and provides insights how the viral genome is retained within the capsid.
Collapse
Affiliation(s)
- Peter Naniima
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Eleonora Naimo
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khaled R. Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Luisa J. Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Jan-Marc Beneke
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie (HPI), Hamburg, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Prashant Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Gif-sur-Yvette, France
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Eisa M, Loucif H, van Grevenynghe J, Pearson A. Entry of the Varicellovirus Canid herpesvirus 1 into Madin-Darby canine kidney epithelial cells is pH-independent and occurs via a macropinocytosis-like mechanism but without increase in fluid uptake. Cell Microbiol 2021; 23:e13398. [PMID: 34697890 DOI: 10.1111/cmi.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Canid herpesvirus 1 (CHV-1) is a Varicellovirus that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin-Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na+ /H+ exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake. TAKE AWAYS: CHV-1 enters epithelial cells via a macropinocytosis-like mechanism. CHV-1 induces extensive lamellipodial ruffling. CHV-1 entry into MDCK cells is pH-independent.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Hamza Loucif
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Julien van Grevenynghe
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
23
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
The journey of herpesvirus capsids and genomes to the host cell nucleus. Curr Opin Virol 2021; 50:147-158. [PMID: 34464845 DOI: 10.1016/j.coviro.2021.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023]
Abstract
Starting a herpesviral infection is a steeplechase across membranes, cytosol, and nuclear envelopes and against antiviral defence mechanisms. Here, we highlight recent insights on capsid stabilization at the portals during assembly, early capsid-host interactions ensuring nuclear targeting of incoming capsids, and genome uncoating. After fusion with a host membrane, incoming capsids recruit microtubule motors for traveling to the centrosome, and by unknown mechanisms get forward towards the nucleus. The interaction of capsid-associated tegument proteins with nucleoporins orients the capsid portal towards the nuclear pore, and presumably after removal of the portal caps the genomes that have been packaged under pressure can be injected into the nucleoplasm for transcription and replication. Some cell types disarm the incoming capsids or silence the incoming genomes to reduce the likelihood of infection.
Collapse
|
25
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
27
|
Komorizono R, Sassa Y, Horie M, Makino A, Tomonaga K. Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. Viruses 2020; 12:v12111291. [PMID: 33187187 PMCID: PMC7698282 DOI: 10.3390/v12111291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Adaptation of the viral life cycle to host cells is necessary for efficient viral infection and replication. This evolutionary process has contributed to the mechanism for determining the host range of viruses. Orthobornaviruses, members of the family Bornaviridae, are non-segmented, negative-strand RNA viruses, and several genotypes have been isolated from different vertebrate species. Previous studies revealed that some genotypes isolated from avian species can replicate in mammalian cell lines, suggesting the zoonotic potential of avian orthobornaviruses. However, the mechanism by which the host specificity of orthobornaviruses is determined has not yet been identified. In this study, we found that the infectivity of orthobornaviruses is not determined at the viral entry step, mediated by the viral glycoprotein and matrix protein. Furthermore, we demonstrated that the nuclear localization signal (NLS) sequence in the viral nucleoprotein (N) has evolved under natural selection and determines the host-specific viral polymerase activity. A chimeric mammalian orthobornavirus, which has the NLS sequence of avian orthobornavirus N, exhibited a reduced propagation efficiency in mammalian cells. Our findings indicated that nuclear transport of the viral N is a determinant of the host range of orthobornaviruses, providing insights into the evolution and host adaptation of orthobornaviruses.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Yukiko Sassa
- Laboratory of Veterinary Infectious Disease, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Correspondence: (A.M.); (K.T.)
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; (R.K.); (M.H.)
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Correspondence: (A.M.); (K.T.)
| |
Collapse
|
28
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
29
|
Marvaldi L, Panayotis N, Alber S, Dagan SY, Okladnikov N, Koppel I, Di Pizio A, Song DA, Tzur Y, Terenzio M, Rishal I, Gordon D, Rother F, Hartmann E, Bader M, Fainzilber M. Importin α3 regulates chronic pain pathways in peripheral sensory
neurons. Science 2020; 369:842-846. [DOI: 10.1126/science.aaz5875] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
How is neuropathic pain regulated in peripheral sensory neurons?
Importins are key regulators of nucleocytoplasmic transport. In this study,
we found that importin α3 (also known as karyopherin subunit alpha 4) can
control pain responsiveness in peripheral sensory neurons in mice. Importin
α3 knockout or sensory neuron–specific knockdown in mice reduced
responsiveness to diverse noxious stimuli and increased tolerance to
neuropathic pain. Importin α3–bound c-Fos and importin α3–deficient neurons
were impaired in c-Fos nuclear import. Knockdown or dominant-negative
inhibition of c-Fos or c-Jun in sensory neurons reduced neuropathic pain. In
silico screens identified drugs that mimic importin α3 deficiency. These
drugs attenuated neuropathic pain and reduced c-Fos nuclear localization.
Thus, perturbing c-Fos nuclear import by importin α3 in peripheral neurons
can promote analgesia.
Collapse
Affiliation(s)
- Letizia Marvaldi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Stefanie Alber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shachar Y. Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nataliya Okladnikov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Indrek Koppel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Agostina Di Pizio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Didi-Andreas Song
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yarden Tzur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa 904-0412, Japan
| | - Ida Rishal
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalia Gordon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Franziska Rother
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Center for Structural and Cellular Biology in Medicine, Institute of Biology, University of Lübeck, 23538 Lübeck, Germany
| | - Enno Hartmann
- Center for Structural and Cellular Biology in Medicine, Institute of Biology, University of Lübeck, 23538 Lübeck, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Center for Structural and Cellular Biology in Medicine, Institute of Biology, University of Lübeck, 23538 Lübeck, Germany
- Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Elsner C, Ponnurangam A, Kazmierski J, Zillinger T, Jansen J, Todt D, Döhner K, Xu S, Ducroux A, Kriedemann N, Malassa A, Larsen PK, Hartmann G, Barchet W, Steinmann E, Kalinke U, Sodeik B, Goffinet C. Absence of cGAS-mediated type I IFN responses in HIV-1-infected T cells. Proc Natl Acad Sci U S A 2020; 117:19475-19486. [PMID: 32709741 PMCID: PMC7431009 DOI: 10.1073/pnas.2002481117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The DNA sensor cGAS catalyzes the production of the cyclic dinucleotide cGAMP, resulting in type I interferon responses. We addressed the functionality of cGAS-mediated DNA sensing in human and murine T cells. Activated primary CD4+ T cells expressed cGAS and responded to plasmid DNA by upregulation of ISGs and release of bioactive interferon. In mouse T cells, cGAS KO ablated sensing of plasmid DNA, and TREX1 KO enabled cells to sense short immunostimulatory DNA. Expression of IFIT1 and MX2 was downregulated and upregulated in cGAS KO and TREX1 KO T cell lines, respectively, compared to parental cells. Despite their intact cGAS sensing pathway, human CD4+ T cells failed to mount a reverse transcriptase (RT) inhibitor-sensitive immune response following HIV-1 infection. In contrast, infection of human T cells with HSV-1 that is functionally deficient for the cGAS antagonist pUL41 (HSV-1ΔUL41N) resulted in a cGAS-dependent type I interferon response. In accordance with our results in primary CD4+ T cells, plasmid challenge or HSV-1ΔUL41N inoculation of T cell lines provoked an entirely cGAS-dependent type I interferon response, including IRF3 phosphorylation and expression of ISGs. In contrast, no RT-dependent interferon response was detected following transduction of T cell lines with VSV-G-pseudotyped lentiviral or gammaretroviral particles. Together, T cells are capable to raise a cGAS-dependent cell-intrinsic response to both plasmid DNA challenge or inoculation with HSV-1ΔUL41N. However, HIV-1 infection does not appear to trigger cGAS-mediated sensing of viral DNA in T cells, possibly by revealing viral DNA of insufficient quantity, length, and/or accessibility to cGAS.
Collapse
Affiliation(s)
- Carina Elsner
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
- Institute for Virology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Aparna Ponnurangam
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Julia Kazmierski
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Katinka Döhner
- Institute of Virology, Hanover Medical School, 30625 Hanover, Germany
| | - Shuting Xu
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Aurélie Ducroux
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Nils Kriedemann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Angelina Malassa
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
- German Center for Infection Research, 50935 Cologne-Bonn, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany
| | - Beate Sodeik
- Institute of Virology, Hanover Medical School, 30625 Hanover, Germany
- Cluster of Excellence Resolving Infection Susceptibility (Excellence Cluster 2155), Hanover Medical School, 30625 Hanover, Germany
| | - Christine Goffinet
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany;
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
| |
Collapse
|
31
|
Lang J, Bohn P, Bhat H, Jastrow H, Walkenfort B, Cansiz F, Fink J, Bauer M, Olszewski D, Ramos-Nascimento A, Duhan V, Friedrich SK, Becker KA, Krawczyk A, Edwards MJ, Burchert A, Huber M, Friebus-Kardash J, Göthert JR, Hardt C, Probst HC, Schumacher F, Köhrer K, Kleuser B, Babiychuk EB, Sodeik B, Seibel J, Greber UF, Lang PA, Gulbins E, Lang KS. Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease. Nat Commun 2020; 11:1338. [PMID: 32165633 PMCID: PMC7067866 DOI: 10.1038/s41467-020-15072-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1-/- mice results in replication of HSV-1 and Asah1-/- mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.
Collapse
Affiliation(s)
- Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Patrick Bohn
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Holger Jastrow
- Institute of Anatomy, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Bernd Walkenfort
- Institut for Experimental Immunology and Imaging, Imaging Center Essen, Electron Microscopy Unit, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Feyza Cansiz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Michael Bauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Ana Ramos-Nascimento
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Katrin Anne Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Infectious Diseases, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstr., Marburg, D-35043, Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hospital Hygiene, Philipps-University Marburg, Hans-Meerwein Str. 2, Marburg, D-35043, Germany
| | - Justa Friebus-Kardash
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center, University Hospital of Essen, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany
| | - Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Langenbeckstr. 1, Mainz, D-55131, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, Nuthetal, D-14558, Germany
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstr. 4, CH-3012, Bern, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University of Würzburg, Am Hubland, Würzburg, D-97074, Germany
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstr. 190, CH-8057, Zurich, Switzerland
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstr. 55, Essen, D-45147, Germany.
| |
Collapse
|
32
|
Danastas K, Cunningham AL, Miranda-Saksena M. The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1. Methods Mol Biol 2020; 2060:409-418. [PMID: 31617194 DOI: 10.1007/978-1-4939-9814-2_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding how herpes simplex virus-1 (HSV-1) interacts with different parts of the neuron is fundamental in understanding the mechanisms behind HSV-1 transport during primary and recurrent infections. In this chapter, we describe a unique neuronal culture system that is capable of compartmentalizing neuronal cell bodies from their axons to study the transport of HSV-1 along axons. The ability to separate neuronal cell bodies and axons provides a unique model to investigate the mechanisms used by HSV-1 for viral transport, assembly, and exit from different parts of the neuron.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- The University of Sydney, Westmead, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Medical School, The University of Sydney, Westmead, NSW, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia.
- The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
33
|
Grosche L, Döhner K, Düthorn A, Hickford-Martinez A, Steinkasserer A, Sodeik B. Herpes Simplex Virus Type 1 Propagation, Titration and Single-step Growth Curves. Bio Protoc 2019; 9:e3441. [PMID: 33654936 DOI: 10.21769/bioprotoc.3441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Given the endemic seroprevalence of herpes simplex viruses (HSV), its associated human diseases, and the emergence of acyclovir-resistant strains, there is a continuous need for better antiviral therapies. Towards this aim, identifying mechanistic details of how HSV-1 manipulates infected cells, how it modulates the immune responses, and how it causes diseases are essential. Measuring titers and growth kinetics of clinical isolates and viral mutants are important for a thorough characterization of viral phenotypes in vitro and in vivo. We provide protocols for the preparation as well as titration of HSV-1 stocks, and explain how to perform single-step growth curves to characterize the functions of viral proteins or host factors during infection. In particular, we describe methods to prepare and characterize high-titer HSV-1 stocks with low genome to titer ratios that are required for infection studies in cell culture and animal experiments.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katinka Döhner
- Institute of Virology, OE5230, Hannover Medical School, Hannover, Germany
| | - Alexandra Düthorn
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | - Beate Sodeik
- Institute of Virology, OE5230, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Nucleocapsid Assembly of Baculoviruses. Viruses 2019; 11:v11070595. [PMID: 31266177 PMCID: PMC6669607 DOI: 10.3390/v11070595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 01/27/2023] Open
Abstract
The baculovirus nucleocapsid is formed through a rod-like capsid encapsulating a genomic DNA molecule of 80~180 kbp. The viral capsid is a large oligomer composed of many copies of various protein subunits. The assembly of viral capsids is a complex oligomerization process. The timing of expression of nucleocapsid-related proteins, transport pathways, and their interactions can affect the assembly process of preformed capsids. In addition, the selection of viral DNA and the injection of the viral genome into empty capsids are the critical steps in nucleocapsid assembly. This paper reviews the replication and recombination of baculovirus DNA, expression and transport of capsid proteins, formation of preformed capsids, DNA encapsulation, and nucleocapsid formation. This review will provide a basis for further study of the nucleocapsid assembly mechanism of baculovirus.
Collapse
|
35
|
Human MxB Protein Is a Pan-herpesvirus Restriction Factor. J Virol 2018; 92:JVI.01056-18. [PMID: 29950411 DOI: 10.1128/jvi.01056-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/24/2023] Open
Abstract
Herpesvirus infections are highly prevalent in the human population and persist for life. They are often acquired subclinically but potentially progress to life-threatening diseases in immunocompromised individuals. The interferon system is indispensable for the control of herpesviral replication. However, the responsible antiviral effector mechanisms are not well characterized. The type I interferon-induced, human myxovirus resistance 2 (MX2) gene product MxB, a dynamin-like large GTPase, has recently been identified as a potent inhibitor of HIV-1. We now show that MxB also interferes with an early step of herpesvirus replication, affecting alpha-, beta-, and gammaherpesviruses before or at the time of immediate early gene expression. Defined MxB mutants influencing GTP binding and hydrolysis revealed that the effector mechanism against herpesviruses is thoroughly different from that against HIV-1. Overall, our findings demonstrate that MxB serves as a broadly acting intracellular restriction factor that controls the establishment of not only retrovirus but also herpesvirus infection of all three subfamilies.IMPORTANCE Human herpesviruses pose a constant threat to human health. Reactivation of persisting herpesvirus infections, particularly in immunocompromised individuals and the elderly, can cause severe diseases, such as zoster, pneumonia, encephalitis, or cancer. The interferon system is relevant for the control of herpesvirus replication as exemplified by fatal disease outcomes in patients with primary immunodeficiencies. Here, we describe the interferon-induced, human MX2 gene product MxB as an efficient restriction factor of alpha-, beta-, and gammaherpesviruses. MxB has previously been described as an inhibitor of HIV-1. Importantly, our mutational analyses of MxB reveal an antiviral mechanism of herpesvirus restriction distinct from that against HIV-1. Thus, the dynamin-like MxB GTPase serves as a broadly acting intracellular restriction factor that controls retrovirus as well as herpesvirus infections.
Collapse
|
36
|
Leal-Esteban LC, Rothé B, Fortier S, Isenschmid M, Constam DB. Role of Bicaudal C1 in renal gluconeogenesis and its novel interaction with the CTLH complex. PLoS Genet 2018; 14:e1007487. [PMID: 29995892 PMCID: PMC6056059 DOI: 10.1371/journal.pgen.1007487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023] Open
Abstract
Altered glucose and lipid metabolism fuel cystic growth in polycystic kidneys, but the cause of these perturbations is unclear. Renal cysts also associate with mutations in Bicaudal C1 (Bicc1) or in its self-polymerizing sterile alpha motif (SAM). Here, we found that Bicc1 maintains normoglycemia and the expression of the gluconeogenic enzymes FBP1 and PEPCK in kidneys. A proteomic screen revealed that Bicc1 interacts with the C-Terminal to Lis-Homology domain (CTLH) complex. Since the orthologous Gid complex in S. cerevisae targets FBP1 and PEPCK for degradation, we mapped the topology among CTLH subunits and found that SAM-mediated binding controls Bicc1 protein levels, whereas Bicc1 inhibited the accumulation of several CTLH subunits. Under the conditions analyzed, Bicc1 increased FBP1 protein levels independently of the CTLH complex. Besides linking Bicc1 to cell metabolism, our findings reveal new layers of complexity in the regulation of renal gluconeogenesis compared to lower eukaryotes. Polycystic kidney diseases (PKD) are incurable inherited chronic disorders marked by fluid-filled cysts that frequently cause renal failure. A glycolytic metabolism reminiscent of cancerous cells accelerates cystic growth, but the mechanism underlying such metabolic re-wiring is poorly understood. PKD-like cystic kidneys also develop in mice that lack the RNA-binding protein Bicaudal-C (Bicc1), and mutations in a single copy of human BICC1 associate with renal cystic dysplasia. Here, we report that Bicc1 regulates renal gluconeogenesis. A screen for interacting factors revealed that Bicc1 binds the C-Terminal to Lis-Homology domain (CTLH) complex, which in lower eukaryotes mediates degradation of gluconeogenic enzymes. By contrast, Bicc1 and the mammalian CTLH complex regulated each other, and Bicc1 stimulated the accumulation of the rate-limiting gluconeogenic enzyme even in cells depleted of CTLH subunits. Our finding that Bicc1 is required for normoglycemia implies that renal gluconeogenesis may be important to inhibit cyst formation.
Collapse
Affiliation(s)
- Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|