1
|
Derby N, Biswas S, Yusova S, Luevano-Santos C, Pacheco MC, Meyer KA, Johnson BI, Fischer M, Fancher KA, Fisher C, Abraham YM, McMahon CJ, Lutz SS, Smedley JV, Burwitz BJ, Sodora DL. SIV Infection Is Associated with Transient Acute-Phase Steatosis in Hepatocytes In Vivo. Viruses 2024; 16:296. [PMID: 38400071 PMCID: PMC10892327 DOI: 10.3390/v16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a major cause of morbidity and mortality in HIV-infected individuals, even those receiving optimal antiretroviral therapy. Here, we utilized the SIV rhesus macaque model and advanced laparoscopic techniques for longitudinal collection of liver tissue to elucidate the timing of pathologic changes. The livers of both SIV-infected (N = 9) and SIV-naïve uninfected (N = 8) macaques were biopsied and evaluated at four time points (weeks -4, 2, 6, and 16-20 post-infection) and at necropsy (week 32). SIV DNA within the macaques' livers varied by over 4 logs at necropsy, and liver SIV DNA significantly correlated with SIV RNA in the plasma throughout the study. Acute phase liver pathology (2 weeks post-infection) was characterized by evidence for fat accumulation (microvesicular steatosis), a transient elevation in both AST and cholesterol levels within the serum, and increased hepatic expression of the PPARA gene associated with cholesterol metabolism and beta oxidation. By contrast, the chronic phase of the SIV infection (32 weeks post-infection) was associated with sinusoidal dilatation, while steatosis resolved and concentrations of AST and cholesterol remained similar to those in uninfected macaques. These findings suggest differential liver pathologies associated with the acute and chronic phases of infection and the possibility that therapeutic interventions targeting metabolic function may benefit liver health in people newly diagnosed with HIV.
Collapse
Affiliation(s)
- Nina Derby
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Sreya Biswas
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Sofiya Yusova
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Cristina Luevano-Santos
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | | | - Kimberly A. Meyer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Brooke I. Johnson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Miranda Fischer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Cole Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Yohannes M. Abraham
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Conor J. McMahon
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Savannah S. Lutz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| |
Collapse
|
2
|
Fonseca JA, King AC, Chahroudi A. More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure. Curr HIV/AIDS Rep 2024; 21:11-29. [PMID: 38227162 PMCID: PMC10859349 DOI: 10.1007/s11904-023-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW An HIV cure that eliminates the viral reservoir or provides viral control without antiretroviral therapy (ART) is an urgent need in children as they face unique challenges, including lifelong ART adherence and the deleterious effects of chronic immune activation. This review highlights the importance of nonhuman primate (NHP) models in developing an HIV cure for children as these models recapitulate the viral pathogenesis and persistence. RECENT FINDINGS Several cure approaches have been explored in infant NHPs, although knowledge gaps remain. Broadly neutralizing antibodies (bNAbs) show promise for controlling viremia and delaying viral rebound after ART interruption but face administration challenges. Adeno-associated virus (AAV) vectors hold the potential for sustained bNAb expression. Therapeutic vaccination induces immune responses against simian retroviruses but has yet to impact the viral reservoir. Combining immunotherapies with latency reversal agents (LRAs) that enhance viral antigen expression should be explored. Current and future cure approaches will require adaptation for the pediatric immune system and unique features of virus persistence, for which NHP models are fundamental to assess their efficacy.
Collapse
Affiliation(s)
- Jairo A Fonseca
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis C King
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Emory+Children's Center for Childhood Infections and Vaccines, Atlanta, GA, USA.
| |
Collapse
|
3
|
Chen Y, Huang Y, Huang R, Chen Z, Wang X, Chen F, Huang Y. Interleukin-10 gene intervention ameliorates liver fibrosis by enhancing the immune function of natural killer cells in liver tissue. Int Immunopharmacol 2024; 127:111341. [PMID: 38081103 DOI: 10.1016/j.intimp.2023.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND AND AIMS Interleukin 10 (IL-10) and natural killer (NK) cells have the potential to combat liver fibrosis. However, whether NK cells play an important role in the anti-fibrotic effects of IL-10 is not sufficiently elucidated. In this study, we investigated the regulatory effects of IL-10 on NK cells during liver fibrosis. METHODS Fibrotic mice induced with carbon tetrachloride were treated with or without IL-10 in the presence or absence of NK cells. Liver damage and fibrosis were assessed using hematoxylin and eosin and Sirius Red staining and serum transaminase and liver hydroxyproline assays, respectively. NK cell distribution, quantity, activation, cytotoxicity, development, and origin were analyzed using immunohistochemistry, immunofluorescence, and flow cytometry. Enzyme-linked immunosorbent assay was used to determine chemokine levels. RESULTS In the presence of NK cells, IL-10 gene intervention improved liver fibrosis and enhanced NK cell accumulation and function in the liver, as evidenced by increased NKG2D, interferon-γ, and CD107a expression. Furthermore, IL-10 promoted the migration of circulating NK cells to the fibrotic liver and elevated C-C motif ligand 5 levels. However, depletion of NK cells exacerbated liver fibrosis and impaired the anti-fibrotic effect of IL-10. CONCLUSIONS The anti-fibrotic effect of IL-10 relies on the enhancement of NK cell immune function, including activation, cytotoxicity, development, and migration. These results provide valuable insights into the mechanisms through which IL-10 regulates NK cells to limit the progression of liver fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yixuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Rongfeng Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Fenglin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China; Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fuzhou, Fujian 350001, China.
| |
Collapse
|
4
|
Clain JA, Boutrais S, Dewatines J, Racine G, Rabezanahary H, Droit A, Zghidi-Abouzid O, Estaquier J. Lipid metabolic reprogramming of hepatic CD4 + T cells during SIV infection. Microbiol Spectr 2023; 11:e0168723. [PMID: 37656815 PMCID: PMC10581067 DOI: 10.1128/spectrum.01687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/24/2023] [Indexed: 09/03/2023] Open
Abstract
While liver inflammation is associated with AIDS, little is known so far about hepatic CD4+ T cells. By using the simian immunodeficiency virus (SIV)-infected rhesus macaque (RM) model, we aimed to characterize CD4+ T cells. The phenotype of CD4+ T cells was assessed by flow cytometry from uninfected (n = 3) and infected RMs, with either SIVmac251 (n = 6) or SHIVSF162p3 (n = 6). After cell sorting of hepatic CD4+ T cells, viral DNA quantification and RNA sequencing were performed.Thus, we demonstrated that liver CD4+ T cells strongly expressed the SIV coreceptor, CCR5. We showed that viremia was negatively correlated with the percentage of hepatic effector memory CD4+ T cells. Consistent with viral sensing, inflammatory and interferon gene transcripts were increased. We also highlighted the presence of harmful CD4+ T cells expressing GZMA and members of TGFB that could contribute to fuel inflammation and fibrosis. Whereas RNA sequencing demonstrated activated CD4+ T cells displaying higher levels of mitoribosome and membrane lipid synthesis transcripts, few genes were related to glycolysis and oxidative phosphorylation, which are essential to sustain activated T cells. Furthermore, we observed lower levels of mitochondrial DNA and higher levels of genes associated with damaged organelles (reticulophagy and mitophagy). Altogether, our data revealed that activated hepatic CD4+ T cells are reprogrammed to lipid metabolism. Thus, strategies aiming to reprogram T cell metabolism with effector function could be of interest for controlling viral infection and preventing liver disorders.IMPORTANCEHuman immunodeficiency virus (HIV) infection may cause liver diseases, associated with inflammation and tissue injury, contributing to comorbidity in people living with HIV. Paradoxically, the contribution of hepatic CD4+ T cells remains largely underestimated. Herein, we used the model of simian immunodeficiency virus (SIV)-infected rhesus macaques to access liver tissue. Our work demonstrates that hepatic CD4+ T cells express CCR5, the main viral coreceptor, and are infected. Viral infection is associated with the presence of inflamed and activated hepatic CD4+ T cells expressing cytotoxic molecules. Furthermore, hepatic CD4+ T cells are reprogrammed toward lipid metabolism after SIV infection. Altogether, our findings shed new light on hepatic CD4+ T cell profile that could contribute to liver injury following viral infection.
Collapse
Affiliation(s)
- Julien A. Clain
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Steven Boutrais
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Juliette Dewatines
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Gina Racine
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | | | - Arnaud Droit
- Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
- Computational Biology Laboratory, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Ouafa Zghidi-Abouzid
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
| | - Jérôme Estaquier
- Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- INSERM U1124, Université Paris, Paris, France
| |
Collapse
|
5
|
Clain JA, Rabezanahary H, Racine G, Boutrais S, Soundaramourty C, Joly Beauparlant C, Jenabian MA, Droit A, Ancuta P, Zghidi-Abouzid O, Estaquier J. Early ART reduces viral seeding and innate immunity in liver and lungs of SIV-infected macaques. JCI Insight 2023; 8:e167856. [PMID: 37485876 PMCID: PMC10443800 DOI: 10.1172/jci.insight.167856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Identifying immune cells and anatomical tissues that contribute to the establishment of viral reservoirs is of central importance in HIV-1 cure research. Herein, we used rhesus macaques (RMs) infected with SIVmac251 to analyze viral seeding in the liver and lungs of either untreated or early antiretroviral therapy-treated (ART-treated) RMs. Consistent with viral replication and sensing, transcriptomic analyses showed higher levels of inflammation, pyroptosis, and chemokine genes as well as of interferon-stimulating gene (ISG) transcripts, in the absence of ART. Our results highlighted the infiltration of monocyte-derived macrophages (HLA-DR+CD11b+CD14+CD16+) in inflamed liver and lung tissues associated with the expression of CD183 and CX3CR1 but also with markers of tissue-resident macrophages (CD206+ and LYVE+). Sorting of myeloid cell subsets demonstrated that CD14+CD206-, CD14+CD206+, and CD14-CD206+ cell populations were infected, in the liver and lungs, in SIVmac251-infected RMs. Of importance, early ART drastically reduced viral seeding consistent with the absence of ISG detection but also of genes related to inflammation and tissue damage. Viral DNA was only detected in CD206+HLA-DR+CD11b+ cells in ART-treated RMs. The observation of pulmonary and hepatic viral rebound after ART interruption reinforces the importance of early ART implementation to limit viral seeding and inflammatory reactions.
Collapse
Affiliation(s)
- Julien A. Clain
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | - Gina Racine
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Steven Boutrais
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | | | | | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, University of Quebec in Montreal, Montreal, Quebec, Canada
| | - Arnaud Droit
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
| | - Petronela Ancuta
- Research Center of the University of Montreal Hospital Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Jérôme Estaquier
- CHU de Québec Research Center, Laval University, Quebec City, Quebec, Canada
- INSERM U1124, University of Paris, Paris, France
| |
Collapse
|
6
|
Khodayari N, Oshins R, Aranyos AM, Duarte S, Mostofizadeh S, Lu Y, Brantly M. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2022; 323:G594-G608. [PMID: 36256438 DOI: 10.1152/ajpgi.00207.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alek M Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Sugawara S, Reeves RK, Jost S. Learning to Be Elite: Lessons From HIV-1 Controllers and Animal Models on Trained Innate Immunity and Virus Suppression. Front Immunol 2022; 13:858383. [PMID: 35572502 PMCID: PMC9094575 DOI: 10.3389/fimmu.2022.858383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Although antiretroviral therapy (ART) has drastically changed the lives of people living with human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus, the control of HIV-1 replication by the host immune system, namely functional cure, has long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs) are rare individuals who naturally maintain undetectable HIV-1 replication levels in the absence of ART and whose immune repertoire might be a desirable blueprint for a functional cure. While the role(s) played by distinct human leukocyte antigen (HLA) expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1 has been widely characterized in ECs, the innate immune phenotype has been decidedly understudied. Comparably, in animal models such as HIV-1-infected humanized mice and simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control is known to be associated with specific major histocompatibility complex (MHC) alleles and CD8+ T cell activity, but the innate immune response remains incompletely characterized. Notably, recent work demonstrating the existence of trained innate immunity may provide new complementary approaches to achieve an HIV-1 cure. Herein, we review the known characteristics of innate immune responses in ECs and available animal models, identify gaps of knowledge regarding responses by adaptive or trained innate immune cells, and speculate on potential strategies to induce EC-like responses in HIV-1 non-controllers.
Collapse
|
8
|
Fisher BS, Fancher KA, Gustin AT, Fisher C, Wood MP, Gale M, Burwitz BJ, Smedley J, Klatt NR, Derby N, Sodora DL. Liver Bacterial Dysbiosis With Non-Tuberculosis Mycobacteria Occurs in SIV-Infected Macaques and Persists During Antiretroviral Therapy. Front Immunol 2022; 12:793842. [PMID: 35082782 PMCID: PMC8784802 DOI: 10.3389/fimmu.2021.793842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 01/26/2023] Open
Abstract
Liver disease is a significant contributor to morbidity and mortality in HIV-infected individuals, even during successful viral suppression with combination antiretroviral therapy (cART). Similar to HIV infection, SIV infection of rhesus macaques is associated with gut microbiome dysbiosis and microbial translocation that can be detected systemically in the blood. As microbes leaving the intestines must first pass through the liver via the portal vein, we evaluated the livers of both SIV-infected (SIV+) and SIV-infected cART treated (SIV+cART) rhesus macaques for evidence of microbial changes compared to uninfected macaques. Dysbiosis was observed in both the SIV+ and SIV+cART macaques, encompassing changes in the relative abundance of several genera, including a reduction in the levels of Lactobacillus and Staphylococcus. Most strikingly, we found an increase in the relative abundance and absolute quantity of bacteria within the Mycobacterium genus in both SIV+ and SIV+cART macaques. Multi-gene sequencing identified a species of atypical mycobacteria similar to the opportunistic pathogen M. smegmatis. Phosphatidyl inositol lipoarabinomannan (PILAM) (a glycolipid cell wall component found in atypical mycobacteria) stimulation in primary human hepatocytes resulted in an upregulation of inflammatory transcriptional responses, including an increase in the chemokines associated with neutrophil recruitment (CXCL1, CXCL5, and CXCL6). These studies provide key insights into SIV associated changes in hepatic microbial composition and indicate a link between microbial components and immune cell recruitment in SIV+ and SIV+cART treated macaques.
Collapse
Affiliation(s)
- Bridget S. Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Katherine A. Fancher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Andrew T. Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Cole Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Matthew P. Wood
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nichole R. Klatt
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nina Derby
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Donald L. Sodora
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
9
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Wood MP, Wood LF, Templeton M, Fisher B, Lippy A, Jones CI, Lindestam Arlehamn CS, Sette A, Fuller JT, Murapa P, Jaspan HB, Fuller DH, Sodora DL. Transient Immune Activation in BCG-Vaccinated Infant Rhesus Macaques Is Not Sufficient to Influence Oral Simian Immunodeficiency Virus Infection. J Infect Dis 2021; 222:44-53. [PMID: 31605528 DOI: 10.1093/infdis/jiz382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
BCG vaccination has been demonstrated to increase levels of activated CD4+ T cells, thus potentially influencing mother-to-child transmission of human immunodeficiency virus (HIV). To assess the risk of BCG vaccination in HIV infection, we randomly assigned newborn rhesus macaques to receive BCG vaccine or remain unvaccinated and then undergo oral simian immunodeficiency virus (SIV) challenges 3 weeks later. We observed elevated levels of activated peripheral CD4+ T cells (ie, HLA-DR+CD38+CCR5+ CD4+ T cells) by week 3 after vaccination. BCG was also associated with an altered immune gene expression profile, as well as with monocyte activation in both peripheral blood and the draining axillary lymph node, indicating significant BCG vaccine-induced immune activation. Despite these effects, BCG vaccination did not increase the rate of SIV oral transmission or disease progression. Our findings therefore identify patterns of T-cell and monocyte activation that occur after BCG vaccination but do not support the hypothesis that BCG vaccination is a risk factor for postnatal HIV transmission or increased pathogenesis in infants.
Collapse
Affiliation(s)
- Matthew P Wood
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Lianna F Wood
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Megan Templeton
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Bridget Fisher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Chloe I Jones
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, San Diego.,Department of Medicine, University of California-San Diego, La Jolla, California
| | - James T Fuller
- Department of Microbiology, Seattle, Washington; and University of Washington.,Washington National Primate Research Center, Seattle, Washington
| | - Patience Murapa
- Department of Microbiology, Seattle, Washington; and University of Washington.,Washington National Primate Research Center, Seattle, Washington
| | - Heather B Jaspan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| | - Deborah H Fuller
- Department of Microbiology, Seattle, Washington; and University of Washington.,Washington National Primate Research Center, Seattle, Washington
| | - Donald L Sodora
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
11
|
Jeyarajan AJ, Chung RT. Insights Into the Pathophysiology of Liver Disease in HCV/HIV: Does it End With HCV Cure? J Infect Dis 2020; 222:S802-S813. [PMID: 33245355 PMCID: PMC7693973 DOI: 10.1093/infdis/jiaa279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HCV-HIV coinfected patients exhibit rapid progression of liver damage relative to HCV monoinfected patients. The availability of new directly acting antiviral agents has dramatically improved outcomes for coinfected patients as sustained virologic response rates now exceed 95% and fibrosis-related parameters are improved. Nevertheless, coinfected patients still have a higher mortality risk and more severe hepatocellular carcinoma compared to HCV monoinfected patients, implying the existence of pathways unique to people living with HIV that continue to promote accelerated liver disease. In this article, we review the pathobiology of liver disease in HCV-HIV coinfected patients in the directly acting antiviral era and explore the mechanisms through which HIV itself induces liver damage. Since liver disease is one of the leading causes of non-AIDS-related mortality in HIV-positive patients, enhancing our understanding of HIV-associated fibrotic pathways will remain important for new diagnostic and therapeutic strategies to slow or reverse liver disease progression, even after HCV cure.
Collapse
Affiliation(s)
- Andre J Jeyarajan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raymond T Chung
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.01478-20. [PMID: 32907978 DOI: 10.1128/jvi.01478-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Despite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation.
Collapse
|
13
|
Peluso MJ, Colby DJ, Pinyakorn S, Ubolyam S, Intasan J, Trichavaroj R, Chomchey N, Prueksakaew P, Slike BM, Krebs SJ, Jian N, Robb ML, Phanuphak P, Phanuphak N, Spudich S, Ananworanich J, Kroon E. Liver function test abnormalities in a longitudinal cohort of Thai individuals treated since acute HIV infection. J Int AIDS Soc 2020; 23:e25444. [PMID: 31953919 PMCID: PMC6968973 DOI: 10.1002/jia2.25444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Liver disease is a common cause of non-AIDS morbidity and mortality in people living with HIV (PLHIV), but the prevalence and significance of liver function test (LFT) abnormalities in early HIV infection is unknown. This study aimed to characterize LFTs in a large cohort of participants with acute HIV infection initiating immediate antiretroviral therapy (ART) and examine the association between LFTs and biomarkers of HIV infection and inflammation. METHODS We measured LFTs at the time of HIV diagnosis and at 4, 12, 24 and 48 weeks after ART initiation in 426 Thai individuals with acute HIV infection from 2009 to 2018. A subset of individuals had data available at 96 and 144 weeks. We excluded individuals with concomitant viral hepatitis. Alanine aminotransferase (ALT) was the primary outcome of interest; values greater than 1.25 times the upper limit of normal were considered elevated. Analyses utilized descriptive statistics, non-parametric tests and multivariate logistic regression. RESULTS Sixty-six of the 426 individuals (15.5%) had abnormal baseline ALT levels; the majority (43/66, 65.5%) had Grade 1 elevations. Elevated baseline ALT correlated with Fiebig stages III to V (p = 0.001) and baseline HIV RNA >6 log10 copies/mL (p = 0.012). Baseline elevations resolved by 48 weeks on ART in 59 of the 66 individuals (89%). ALT elevations at 24 and 48 weeks correlated with Fiebig stages I to II at diagnosis (p < 0.001), baseline plasma HIV RNA levels <6 log10 copies/mL (p < 0.001), abnormal baseline ALT (p < 0.001), baseline CD4 >350 cells/μL (p = 0.03) and older age (p = 0.03). Individuals initiating efavirenz-based regimens were more likely to have elevated ALT levels at 48 weeks compared with those on non-efavirenz-based regimens (p = 0.003). CONCLUSIONS One in six people with acute HIV infection have elevated LFTs. Clinical outcomes with ART started in acute HIV are generally good, with resolution of ALT elevations within 48 weeks on ART in most cases. These results suggest a multifactorial model for hepatic injury involving a combination of HIV-associated and ART-associated processes, which may change over time.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Donn J Colby
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Jintana Intasan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Rapee Trichavaroj
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nitiya Chomchey
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | - Bonnie M Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | | | - Jintanat Ananworanich
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.,U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,The University of Amsterdam, Amsterdam, The Netherlands
| | - Eugène Kroon
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | |
Collapse
|
14
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 2019; 15:e1007883. [PMID: 31260499 PMCID: PMC6625740 DOI: 10.1371/journal.ppat.1007883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/12/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation. Although HIV antiviral therapy has limited the progression to AIDS in infected patients, there is still significant morbidity and mortality from HIV-driven diseases due to sustained inflammation. In this study, we sought to elucidate how HIV and HCV could impact inflammation in the liver and cause progressive liver disease that can eventually lead to cirrhosis and liver cancer. We found that HIV upregulates the inflammatory response amplifier, TREM1, in primary Kupffer Cells (KCs) that are liver-resident macrophages. Enhanced TREM1 expression subsequently is involved in augmented immune responses triggered by HIV or HCV. Additionally, our data demonstrates that blocking TREM1 expression reduces inflammatory responses mediated by HIV or HCV stimulation. Ultimately, our understanding of this mechanism may yield additional therapeutic strategies to help infected patients and give insight into inflammation driven liver cancer.
Collapse
|
16
|
Roy AC, Chang G, Ma N, Wang Y, Roy S, Liu J, Aabdin ZU, Shen X. Sodium butyrate suppresses NOD1-mediated inflammatory molecules expressed in bovine hepatocytes during iE-DAP and LPS treatment. J Cell Physiol 2019; 234:19602-19620. [PMID: 30941762 DOI: 10.1002/jcp.28560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
Nucleotide oligomerization domain protein-1 (NOD1), a cytosolic pattern recognition receptor for the γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) is associated with the inflammatory diseases. Very little is known how bovine hepatocytes respond to specific ligands of NOD1 and sodium butyrate (SB). Therefore, the aim of our study was to investigate the role of bovine hepatocytes in NOD1-mediated inflammation during iE-DAP or LPS treatment or SB pretreatment. To achieve this aim, hepatocytes separated from cows at ∼160 days in milk (DIM) were divided into six groups: The nontreated control group (CON), the iE-DAP-treated group (DAP), the lipopolysaccharide-treated group (LPS), iE-DAP with SB group (DSB), LPS with SB group (LSB), and the SB group. Both iE-DAP and LPS highly increased the expression of both NOD1 and RIPK2, the two key factors for the immune response in hepatocytes. IκBα, NF-κB/p65, and MAP kinases (ERK, JNK, and p38) were activated through phosphorylation. The activation of NF-κB and MAPK pathway consequently increased the proinflammatory cytokines, IL-6, TNF-α, IL-8, and IFN-γ and the chemokines CCL5, CCL20, and CXCL-10. Both treatments improved iNOS/NOS2 expression. However, iE-DAP was failed to express acute phase protein SAA3, but HP and LPS HP but SAA3. These ligands also increased LRRK2, TAK1, TAB1, and β-defensins expression. The SB pretreatment at lower dose restored the function of hepatocytes by suppressing these increased molecules, as HDAC3 was inhibited. The activated NOD1 negatively regulated the expression of FOXA2. Altogether these data suggest an important role of bovine hepatocytes to promote immune responses via NOD1 expression during infection in the liver and a key role of SB to attenuate inflammation.
Collapse
Affiliation(s)
- Animesh Chandra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shipra Roy
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zain-Ul Aabdin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Hoang TN, Harper JL, Pino M, Wang H, Micci L, King CT, McGary CS, McBrien JB, Cervasi B, Silvestri G, Paiardini M. Bone Marrow-Derived CD4 + T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol 2019; 93:e01344-18. [PMID: 30305357 PMCID: PMC6288341 DOI: 10.1128/jvi.01344-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022] Open
Abstract
The bone marrow (BM) is the key anatomic site for hematopoiesis and plays a significant role in the homeostasis of mature T cells. However, very little is known on the phenotype of BM-derived CD4+ T cells, their fate during simian immunodeficiency virus (SIV) infection, and their contribution to viral persistence during antiretroviral therapy (ART). In this study, we characterized the immunologic and virologic status of BM-derived CD4+ T cells in rhesus macaques prior to SIV infection, during the early chronic phase of infection, and during ART. We found that BM memory CD4+ T cells are significantly depleted following SIV infection, at levels that are similar to those measured in the peripheral blood (PB). In addition, BM-derived memory CD4+ T cells include a high frequency of cells that express the coinhibitory receptors CTLA-4 and PD-1, two subsets previously shown to be enriched in the viral reservoir; these cells express Ki-67 at levels similar to or higher than the same cells in PB. Finally, when we analyzed SIV-infected RMs in which viral replication was effectively suppressed by 12 months of ART, we found that BM CD4+ T cells harbor SIV DNA and SIV RNA at levels comparable to those of PB CD4+ T cells, including replication-competent SIV. Thus, BM is a largely understudied anatomic site of the latent reservoir which contributes to viral persistence during ART and needs to be further characterized and targeted when designing therapies for a functional or sterilizing cure to HIV.IMPORTANCE The latent viral reservoir is one of the major obstacles in purging the immune system of HIV. It is paramount that we elucidate which anatomic compartments harbor replication-competent virus, which upon ART interruption results in viral rebound and pathogenesis. In this study, using the rhesus macaque model of SIV infection and ART, we examined the immunologic status of the BM and its role as a potential sanctuary for latent virus. We found that the BM compartment undergoes a similar depletion of memory CD4+ T cells as PB, and during ART treatment the BM-derived memory CD4+ T cells contain high levels of cells expressing CTLA-4 and PD-1, as well as amounts of cell-associated SIV DNA, SIV RNA, and replication-competent virus comparable to those in PB. These results enrich our understanding of which anatomic compartments harbor replication virus and suggest that BM-derived CD4+ T cells need to be targeted by therapeutic strategies aimed at achieving an HIV cure.
Collapse
Affiliation(s)
- Timothy N Hoang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin L Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Wang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colin T King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julia B McBrien
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Ganesan M, Poluektova LY, Kharbanda KK, Osna NA. Liver as a target of human immunodeficiency virus infection. World J Gastroenterol 2018; 24:4728-4737. [PMID: 30479460 PMCID: PMC6235802 DOI: 10.3748/wjg.v24.i42.4728] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
Liver injury is a characteristic feature of human immunodeficiency virus (HIV) infection, which is the second most common cause of mortality in HIV-infected patients. Now it is recognized that liver plays a key role in HIV infection pathogenesis. Antiretroviral therapy (ART), which suppresses HIV infection in permissive immune cells, is less effective in hepatocytes, thereby making these cells a silent reservoir of HIV infection. In addition to direct hepatotoxic effects of HIV, certain ART treatment modalities provide hepatotoxic effects. The exact mechanisms of HIV-triggered chronic hepatitis progression are not elucidated, but the liver is adversely affected by HIV-infection and liver cells are prominently involved in HIV-elicited injury. These effects are potentiated by second hits like alcohol. Here, we will focus on the incidence of HIV, clinical evidence of HIV-related liver damage, interactions between HIV and liver cells and the role of alcohol and co-infection with hepatotropic viruses in liver inflammation and fibrosis progression.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, United States
| |
Collapse
|
19
|
Chandra Roy A, Wang Y, Zhang H, Roy S, Dai H, Chang G, Shen X. Sodium Butyrate Mitigates iE-DAP Induced Inflammation Caused by High-Concentrate Feeding in Liver of Dairy Goats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8999-9009. [PMID: 30078321 DOI: 10.1021/acs.jafc.8b02732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study is to explore the impact of sodium butyrate on d-glutamyl- meso-diaminopimelic acid (iE-DAP)-induced liver inflammation in dairy goats during subacute ruminal acidosis (SARA) caused by high-concentrate feed. To achieve this aim, 12 lactating dairy goats were randomly divided into two groups: a high-concentrate feed group ( n = 6, concentrate/forage = 6:4) as the control group and a sodium butyrate (SB) with high-concentrate feed group ( n = 6, concentrate/forage = 6:4, with 1% SB by wt.) as the treatment group. A rumen pH below 5.6 lasted for at least 4 h/d due to long-term HC feeding. The concentration of iE-DAP was significantly lower (11.67 ± 3.85 μg/mL, and 7.74 ± 1.46 μg/mL, at the fourth h and sixth h of feeding, respectively) in the SB-treated group than that in the HC group (51.45 ± 5.71 μg/mL, and 18.31 ± 3.83 μg/mL, at the fourth h and sixth h of feeding, respectively). Meanwhile, SB significantly suppressed the mRNA expression of inflammatory genes (NOD1, RIPK2, TAK1, NF-κB/p65, ERK, JNK2, p38, IL-1β, TNF-α, CCL5, CCL20, CXCL12, FOS, β-defensin/LAP). Moreover, the protein expression of NOD1, p-IκBα, p-NF-κB/p-p65, p-ERK1/2, p-JNK, p-p38, and HDAC3 was significantly downregulated in the HC+SB group. In conclusion, iE-DAP-induced inflammation and liver disruption generated by the HC diet was mitigated by SB treatment.
Collapse
Affiliation(s)
- Animesh Chandra Roy
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yan Wang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Huanmin Zhang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Shipra Roy
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Hongyu Dai
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Guangjun Chang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Xiangzhen Shen
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|