1
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
2
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
3
|
Lin LCW, Croft SN, Croft NP, Wong YC, Smith SA, Tang SS, Purcell AW, Tscharke DC. Direct Priming of CD8 + T Cells Persists in the Face of Cowpox Virus Inhibitors of Antigen Presentation. J Virol 2021; 95:JVI.00186-21. [PMID: 33692206 PMCID: PMC8139650 DOI: 10.1128/jvi.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccinia virus (VACV) was the vaccine used to eradicate smallpox and is being repurposed as a vaccine vector. CD8+ T cells are key anti-viral mediators, but require priming to become effector or memory cells. Priming requires an interaction with dendritic cells that are either infected (direct priming), or that have acquired virus proteins but remain uninfected (cross priming). To investigate CD8+ T cell priming pathways for VACV, we engineered the virus to express CPXV12 and CPXV203, two inhibitors of antigen presentation encoded by cowpox virus. These intracellular proteins would be expected to block direct but not cross priming. The inhibitors had diverse impacts on the size of anti-VACV CD8+ T cell responses across epitopes and by different infection routes in mice, superficially suggesting variable use of direct and cross priming. However, when we then tested a form of antigen that requires direct priming, we found surprisingly that CD8+ T cell responses were not diminished by co-expression with CPXV12 and CPXV203. We then directly quantified the impact of CPXV12 and CPXV203 on viral antigen presentation using mass spectrometry, which revealed strong, but incomplete inhibition of antigen presentation by the CPXV proteins. Therefore, direct priming of CD8+ T cells by poxviruses is robust enough to withstand highly potent viral inhibitors of antigen presentation. This is a reminder of the limits of viral immune evasion and shows that viral inhibitors of antigen presentation cannot be assumed to dissect cleanly direct and cross priming of anti-viral CD8+ T cells.ImportanceCD8+ T cells are key to anti-viral immunity, so it is important to understand how they are activated. Many viruses have proteins that protect infected cells from T cell attack by interfering with the process that allows virus infection to be recognised by CD8+ T cells. It is thought that these proteins would also stop infected cells from activating T cells in the first place. However, we show here that this is not the case for two very powerful inhibitory proteins from cowpox virus. This demonstrates the flexibility and robustness of immune processes that turn on the immune responses required to fight infection.
Collapse
Affiliation(s)
- Leon C. W. Lin
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Nathan P. Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yik Chun Wong
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Swee-Seong Tang
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Sutiwisesak R, Hicks ND, Boyce S, Murphy KC, Papavinasasundaram K, Carpenter SM, Boucau J, Joshi N, Le Gall S, Fortune SM, Sassetti CM, Behar SM. A natural polymorphism of Mycobacterium tuberculosis in the esxH gene disrupts immunodomination by the TB10.4-specific CD8 T cell response. PLoS Pathog 2020; 16:e1009000. [PMID: 33075106 PMCID: PMC7597557 DOI: 10.1371/journal.ppat.1009000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
CD8 T cells provide limited protection against Mycobacterium
tuberculosis (Mtb) infection in the mouse model. As Mtb causes
chronic infection in mice and humans, we hypothesize that Mtb impairs T cell
responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in
people, nonhuman primates, and mice, which is encoded by the
esxH gene. In C57BL/6 mice, 30–50% of pulmonary CD8 T cells
recognize the TB10.44−11 epitope. However, TB10.4-specific CD8 T
cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits
immunodominant CD8 T cell responses to antigens that are inefficiently presented
by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here,
we leverage naturally occurring polymorphisms in esxH, which
frequently occur in lineage 1 strains, to test this “decoy hypothesis”. Using
the clinical isolate 667, which contains an EsxHA10T polymorphism, we
observe a drastic change in the hierarchy of CD8 T cells. Using isogenic
Erd.EsxHA10T and Erd.EsxHWT strains, we prove that
this polymorphism alters the hierarchy of immunodominant CD8 T cell responses.
Our data are best explained by immunodomination, a mechanism by which
competition for APC leads to dominant responses suppressing subdominant
responses. These results were surprising as the variant epitope can bind to
H2-Kb and is recognized by TB10.4-specific CD8 T cells. The
dramatic change in TB10.4-specific CD8 responses resulted from increased
proteolytic degradation of A10T variant, which destroyed the
TB10.44-11epitope. Importantly, this polymorphism affected T cell
priming and recognition of infected cells. These data support a model in which
nonprotective CD8 T cells become immunodominant and suppress subdominant
responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv
sequence-based vaccines could lead to a mismatch between T cells that are primed
by vaccines and the epitopes presented by infected cells. Reprograming host
immune responses should be considered in the future design of vaccines. An important question for vaccine developers is the relative potency of CD4 vs.
CD8 T cells against Mtb, as strategies differ for eliciting these different T
cell subsets. Despite robust antigen-specific pulmonary CD8 T cell responses,
CD4 T cells mediate more protection than CD8 T cells in the murine model. Most
CD8 T cells recognize a single antigen, TB10.4, which is encoded by the
esxH gene. Based on finding that
TB10.44−11-specific CD8 T cells poorly recognize Mtb-infected
macrophages, we hypothesized that Mtb evades detection by CD8 T cells and
focuses the CD8 T cell response on non-protective antigen. We termed these
antigens “decoy antigens.” To test this hypothesis, we took advantage of a
natural variant of the esxH gene, which contains an A10T
polymorphism within the TB10.44−11 epitope. This polymorphism
drastically alters the hierarchy of CD8 T cell responses elicited by Mtb. These
data suggest that immunodomination by the TB10.4 epitope acts to suppress
subdominant CD8 T cell responses to other Mtb antigens, impairing the CD8 T cell
response to other Mtb antigens, some of which might be presented by Mtb-infected
macrophages and be targets of protective immunity. Importantly, this single
amino acid polymorphism, which does not significantly alter MHC-binding or T
cell recognition, alters the half-life of the epitope and consequently, has a
profound effect on CD8 T cell priming and recognition of infected cells. These
data also provide a mechanism that could be exploited to manipulate the
hierarchy of immunodominant responses.
Collapse
Affiliation(s)
- Rujapak Sutiwisesak
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Nathan D. Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Shayla Boyce
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kenan C. Murphy
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Stephen M. Carpenter
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Julie Boucau
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Neelambari Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts
Institute of Technology and Harvard University, Cambridge, MA, United States of
America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts, United States of
America
| | - Christopher M. Sassetti
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
| | - Samuel M. Behar
- Immunology and Microbiology Program, Graduate School of Biomedical
Science, University of Massachusetts Medical School, Worcester, Massachusetts,
United States of America
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester, Massachusetts, United States of
America
- * E-mail:
| |
Collapse
|
5
|
Lin TH, Chen HW, Hsiao YJ, Yan JY, Chiang CY, Chen MY, Hu HM, Wu SH, Pan CH. Immunodomination of Serotype-Specific CD4+ T-Cell Epitopes Contributed to the Biased Immune Responses Induced by a Tetravalent Measles-Vectored Dengue Vaccine. Front Immunol 2020; 11:546. [PMID: 32300346 PMCID: PMC7145397 DOI: 10.3389/fimmu.2020.00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue is an emerging mosquito-borne disease, and the use of prophylactic vaccines is still limited. We previously developed a tetravalent dengue vaccine (rMV-TDV) by a recombinant measles virus (MV) vector expressing envelope protein domain III (ED3). In this study, we used dengue-susceptible AG129 mice to evaluate the protective and/or pathogenic immune responses induced by rMV-TDV. Consistent with the previous study, rMV-TDV-immunized mice developed a significant neutralizing antibody response against all serotypes of DENV, as well as a significant IFN-γ response biased to DENV-3, compared to the vector controls. We further demonstrated that this DENV-3-specific IFN-γ response was dominated by one CD4+ T-cell epitope located in E349-363. After DENV-2 challenge, rMV-TDV-immunized mice showed a significantly lower viremia and no inflammatory cytokine increase compared to the vector controls, which had an ~100 times higher viremia and a significant increase in IFN-γ and TNF-α. As a correlate of protection, a robust memory IFN-γ response specific to DENV-2 was boosted in rMV-TDV-immunized mice after challenge. This result suggested that pre-existing DENV-3-dominated T-cell responses did not cross-react, but a DENV-2-specific IFN-γ response, which was undetectable during immunization, was recalled. Interestingly, this recalled T-cell response recognized the epitope in the same position as the E349-363 but in the DENV-2 serotype. This result suggested that immunodomination occurred in the CD4+ T-cell epitopes between dengue serotypes after rMV-TDV vaccination and resulted in a DENV-3-dominated CD4+ T-cell response. Although the significant increase in IgG against both DENV-2 and -3 suggested that cross-reactive antibody responses were boosted, the increased neutralizing antibodies and IgG avidity still remained DENV-2 specific, consistent with the serotype-specific T cell response post challenge. Our data reveal that immunodomination caused a biased T-cell response to one of the dengue serotypes after tetravalent dengue vaccination and highlight the roles of cross-reactive T cells in dengue protection.
Collapse
Affiliation(s)
- Tsung-Han Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Hsiao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Mei Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Hsien Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Stephens CJ, Lauron EJ, Kashentseva E, Lu ZH, Yokoyama WM, Curiel DT. Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J Control Release 2019; 298:128-141. [PMID: 30771412 PMCID: PMC6636336 DOI: 10.1016/j.jconrel.2019.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 12/25/2022]
Abstract
Hemophilia B (HB) is a life-threatening inherited disease caused by mutations in the FIX gene, leading to reduced protein function and abnormal blood clotting. Due to its monogenic nature, HB is one of the primary targets for gene therapy. Indeed, successful correction of HB has been shown in clinical trials using gene therapy approaches. However, application of these strategies to non-adult patients is limited due to high cell turnover as young patients develop, resulting in vector dilution and subsequent loss of therapeutic expression. Gene editing can potentially overcome this issue by permanently inserting the corrective gene. Integration allows replication of the therapeutic transgene at every cell division and can avoid issues associated with vector dilution. In this study, we explored adenovirus as a platform for corrective CRISPR/Cas9-mediated gene knock-in. We determined as a proof-of-principle that adenoviral delivery of CRISPR/Cas9 is capable of corrective gene addition, leading to long-term augmentation of FIX activity and phenotypic correction in a murine model of juvenile HB. While we found on-target error-free integration in all examined samples, some mice also contained mutations at the integration target site. Additionally, we detected adaptive immune responses against the vector and Cas9 nuclease. Overall, our findings show that the adenovirus platform is suitable for gene insertion in juveniles with inherited disease, suggesting this approach may be applicable to other diseases.
Collapse
Affiliation(s)
- Calvin J Stephens
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA; Molecular Genetics and Genomics Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8226, St. Louis, MO 63110, USA
| | - Elvin J Lauron
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110, USA
| | - Elena Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA
| | - Zhi Hong Lu
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110, USA
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA; Department of Radiation Oncology, Biologic Therapeutics Center, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Lauron EJ, Yang L, Harvey IB, Sojka DK, Williams GD, Paley MA, Bern MD, Park E, Victorino F, Boon ACM, Yokoyama WM. Viral MHCI inhibition evades tissue-resident memory T cell formation and responses. J Exp Med 2019; 216:117-132. [PMID: 30559127 PMCID: PMC6314518 DOI: 10.1084/jem.20181077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/14/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023] Open
Abstract
Tissue-resident memory CD8+ T cells (TRMs) confer rapid protection and immunity against viral infections. Many viruses have evolved mechanisms to inhibit MHCI presentation in order to evade CD8+ T cells, suggesting that these mechanisms may also apply to TRM-mediated protection. However, the effects of viral MHCI inhibition on the function and generation of TRMs is unclear. Herein, we demonstrate that viral MHCI inhibition reduces the abundance of CD4+ and CD8+ TRMs, but its effects on the local microenvironment compensate to promote antigen-specific CD8+ TRM formation. Unexpectedly, local cognate antigen enhances CD8+ TRM development even in the context of viral MHCI inhibition and CD8+ T cell evasion, strongly suggesting a role for in situ cross-presentation in local antigen-driven TRM differentiation. However, local cognate antigen is not required for CD8+ TRM maintenance. We also show that viral MHCI inhibition efficiently evades CD8+ TRM effector functions. These findings indicate that viral evasion of MHCI antigen presentation has consequences on the development and response of antiviral TRMs.
Collapse
Affiliation(s)
- Elvin J Lauron
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ian B Harvey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Dorothy K Sojka
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Graham D Williams
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Michael A Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Eugene Park
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Francisco Victorino
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Adrianus C M Boon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Theisen DJ, Davidson JT, Briseño CG, Gargaro M, Lauron EJ, Wang Q, Desai P, Durai V, Bagadia P, Brickner JR, Beatty WL, Virgin HW, Gillanders WE, Mosammaparast N, Diamond MS, Sibley LD, Yokoyama W, Schreiber RD, Murphy TL, Murphy KM. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 2018; 362:694-699. [PMID: 30409884 PMCID: PMC6655551 DOI: 10.1126/science.aat5030] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8+ T cells by Batf3-dependent CD8α+/XCR1+ classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain-containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3 -/- mice, Wdfy4 -/- mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3 -/- mice, Wdfy4 -/- mice failed to prime virus-specific CD8+ T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elvin J Lauron
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Vir Biotechnology, San Francisco, CA, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Hu X, Lu Z, Valentin A, Rosati M, Broderick KE, Sardesai NY, Marx PA, Mullins JI, Pavlakis GN, Felber BK. Gag and env conserved element CE DNA vaccines elicit broad cytotoxic T cell responses targeting subdominant epitopes of HIV and SIV Able to recognize virus-infected cells in macaques. Hum Vaccin Immunother 2018; 14:2163-2177. [PMID: 29939820 PMCID: PMC6183272 DOI: 10.1080/21645515.2018.1489949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV sequence diversity and the propensity of eliciting immunodominant responses targeting inessential variable regions are hurdles in the development of an effective AIDS vaccine. We developed a DNA vaccine comprising conserved elements (CE) of SIV p27Gag and HIV-1 Env and found that priming vaccination with CE DNA is critical to efficiently overcome the dominance imposed by Gag and Env variable regions. Here, we show that DNA vaccinated macaques receiving the CE prime/CE+full-length DNA co-delivery booster vaccine regimens developed broad, potent and durable cytotoxic T cell responses targeting conserved protein segments of SIV Gag and HIV Env. Gag CE-specific T cells showed robust anamnestic responses upon infection with SIVmac239 which led to the identification of CE-specific cytotoxic lymphocytes able to recognize epitopes covering distinct CE on the surface of SIV infected cells in vivo. Though not controlling infection overall, we found an inverse correlation between Gag CE-specific CD8+ T cell responses and peak viremia. The T cell responses induced by the HIV Env CE immunogen were recalled in some animals upon SIV infection, leading to the identification of two cross-reactive epitopes between HIV and SIV Env based in sequence homology. These data demonstrate that a vaccine combining Gag and Env CE DNA subverted the normal immunodominance patterns, eliciting immune responses that included subdominant, highly conserved epitopes. These vaccine regimens augment cytotoxic T cell responses to highly conserved epitopes in the viral proteome and maximize response breadth. The vaccine-induced CE-specific T cells were expanded upon SIV infection, indicating that the predicted CE epitopes incorporated in the DNA vaccine are processed and exposed by infected cells in their natural context within the viral proteome.
Collapse
Affiliation(s)
- Xintao Hu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Zhongyan Lu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Antonio Valentin
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Margherita Rosati
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | | | | | - Preston A Marx
- d Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine , Tulane University , New Orleans , LA , USA
| | - James I Mullins
- e Departments of Microbiology, Medicine and Laboratory Medicine , University of Washington , Seattle , WA , USA
| | - George N Pavlakis
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Barbara K Felber
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| |
Collapse
|