1
|
Fijalkowski I, Snauwaert V, Van Damme P. Proteins à la carte: riboproteogenomic exploration of bacterial N-terminal proteoform expression. mBio 2024; 15:e0033324. [PMID: 38511928 PMCID: PMC11005335 DOI: 10.1128/mbio.00333-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Valdes Snauwaert
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024:eesp00012023. [PMID: 38415623 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Mohammed BT. Identification and bioinformatic analysis of invA gene of Salmonella in free range chicken. BRAZ J BIOL 2024; 84:e263363. [DOI: 10.1590/1519-6984.263363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Salmonella is a serious cause of the health issues in human and animal worldwide. Salmonella has been isolated from different biological samples and it considers as the key role in induction of inflammation of gastrointestinal tract which in turn cause diarrhoea in different species. To further understand the involvement of Salmonella in contaminating and infecting fresh eggs and meat of free-range chicken. This study aimed to establish the microbiological and molecular detections of Salmonella in the cloaca of the free-range chicken and to identify predicted biological functions using Kyoto Encyclopedia of Gene and Genomic (KEGG) pathways and protein-protein interaction. Cloacal swabs were collected from free range chicken raised in the local farm in Duhok city. The isolates were cultured and biochemical test performed using XLD and TSI, respectively. Molecular detection and functional annotation of invA gene was carried out using Conventional PCR and bioinformatics approaches. The present study found that Salmonella was detected in 36 out of 86 samples using microbiological methods. To confirm these findings, invA gene was utilised and 9 out of 36 Salmonella isolates have shown a positive signal of invA by agarose gel. In addition, bioinformatic analysis revealed that invA gene was mainly associated with bacterial secretion processes as well as their KEGG terms and Protein-Protein Interaction were involved in bacterial invasion and secretion pathways. These findings suggested that invA gene plays important role in regulating colonization and invasion processes of Salmonella within the gut host in the free range chicken.
Collapse
|
4
|
Wimmi S, Balinovic A, Brianceau C, Pintor K, Vielhauer J, Turkowyd B, Helbig C, Fleck M, Langenfeld K, Kahnt J, Glatter T, Endesfelder U, Diepold A. Cytosolic sorting platform complexes shuttle type III secretion system effectors to the injectisome in Yersinia enterocolitica. Nat Microbiol 2024; 9:185-199. [PMID: 38172622 PMCID: PMC10769875 DOI: 10.1038/s41564-023-01545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Bacteria use type III secretion injectisomes to inject effector proteins into eukaryotic target cells. Recruitment of effectors to the machinery and the resulting export hierarchy involve the sorting platform. These conserved proteins form pod structures at the cytosolic interface of the injectisome but are also mobile in the cytosol. Photoactivated localization microscopy in Yersinia enterocolitica revealed a direct interaction of the sorting platform proteins SctQ and SctL with effectors in the cytosol of live bacteria. These proteins form larger cytosolic protein complexes involving the ATPase SctN and the membrane connector SctK. The mobility and composition of these mobile pod structures are modulated in the presence of effectors and their chaperones, and upon initiation of secretion, which also increases the number of injectisomes from ~5 to ~18 per bacterium. Our quantitative data support an effector shuttling mechanism, in which sorting platform proteins bind to effectors in the cytosol and deliver the cargo to the export gate at the membrane-bound injectisome.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Alexander Balinovic
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katherine Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Vielhauer
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jörg Kahnt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
5
|
Park S, Cho E, Senevirathne A, Chung HJ, Ha S, Kim CH, Kang S, Lee JH. Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system. J Vet Sci 2024; 25:e4. [PMID: 38311319 PMCID: PMC10839175 DOI: 10.4142/jvs.23219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. OBJECTIVES In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. METHODS We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. RESULTS Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. CONCLUSIONS Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.
Collapse
Affiliation(s)
- Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan 54596, Korea
- Swine Science Division, National Institute of Animal Science, Cheonan 31000, Korea
| | - Eunseok Cho
- Swine Science Division, National Institute of Animal Science, Cheonan 31000, Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan 54596, Korea
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Hak-Jae Chung
- Swine Science Division, National Institute of Animal Science, Cheonan 31000, Korea
| | - Seungmin Ha
- Dairy Science Division, National Institute of Animal Science, Cheonan 31000, Korea
| | - Chae-Hyun Kim
- Swine Science Division, National Institute of Animal Science, Cheonan 31000, Korea
| | - Seogjin Kang
- Dairy Science Division, National Institute of Animal Science, Cheonan 31000, Korea.
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan 54596, Korea.
| |
Collapse
|
6
|
Soto JE, Lara-Tejero M. The sorting platform in the type III secretion pathway: From assembly to function. Bioessays 2023; 45:e2300078. [PMID: 37329195 DOI: 10.1002/bies.202300078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The type III secretion system (T3SS) is a specialized nanomachine that enables bacteria to secrete proteins in a specific order and directly deliver a specific set of them, collectively known as effectors, into eukaryotic organisms. The core structure of the T3SS is a syringe-like apparatus composed of multiple building blocks, including both membrane-associated and soluble proteins. The cytosolic components organize together in a chamber-like structure known as the sorting platform (SP), responsible for recruiting, sorting, and initiating the substrates destined to engage this secretion pathway. In this article, we provide an overview of recent findings on the SP's structure and function, with a particular focus on its assembly pathway. Furthermore, we discuss the molecular mechanisms behind the recruitment and hierarchical sorting of substrates by this cytosolic complex. Overall, the T3SS is a highly specialized and complex system that requires precise coordination to function properly. A deeper understanding of how the SP orchestrates T3S could enhance our comprehension of this complex nanomachine, which is central to the host-pathogen interface, and could aid in the development of novel strategies to fight bacterial infections.
Collapse
Affiliation(s)
- Jose Eduardo Soto
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Case HB, Gonzalez S, Gustafson ME, Dickenson NE. Differential regulation of Shigella Spa47 ATPase activity by a native C-terminal product of Spa33. Front Cell Infect Microbiol 2023; 13:1183211. [PMID: 37389216 PMCID: PMC10302723 DOI: 10.3389/fcimb.2023.1183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Shigella is a Gram-negative bacterial pathogen that relies on a single type three secretion system (T3SS) as its primary virulence factor. The T3SS includes a highly conserved needle-like apparatus that directly injects bacterial effector proteins into host cells, subverting host cell function, initiating infection, and circumventing resulting host immune responses. Recent findings have located the T3SS ATPase Spa47 to the base of the Shigella T3SS apparatus and have correlated its catalytic function to apparatus formation, protein effector secretion, and overall pathogen virulence. This critical correlation makes Spa47 ATPase activity regulation a likely point of native control over Shigella virulence and a high interest target for non-antibiotic- based therapeutics. Here, we provide a detailed characterization of the natural 11.6 kDa C-terminal translation product of the Shigella T3SS protein Spa33 (Spa33C), showing that it is required for proper virulence and that it pulls down with several known T3SS proteins, consistent with a structural role within the sorting platform of the T3SS apparatus. In vitro binding assays and detailed kinetic analyses suggest an additional role, however, as Spa33C differentially regulates Spa47 ATPase activity based on Spa47s oligomeric state, downregulating Spa47 monomer activity and upregulating activity of both homo-oligomeric Spa47 and the hetero-oligomeric MxiN2Spa47 complex. These findings identify Spa33C as only the second known differential T3SS ATPase regulator to date, with the Shigella protein MxiN representing the other. Describing this differential regulatory protein pair begins to close an important gap in understanding of how Shigella may modulate virulence through Spa47 activity and T3SS function.
Collapse
Affiliation(s)
| | | | | | - Nicholas E. Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
8
|
Abstract
Type III secretion systems are bacterial nanomachines specialized in protein delivery into target eukaryotic cells. The structural and functional complexity of these machines demands highly coordinated mechanisms for their assembly and operation. The sorting platform is a critical component of type III secretion machines that ensures the timely engagement and secretion of proteins destined to travel this export pathway. However, the mechanisms that lead to the assembly of this multicomponent structure have not been elucidated. Herein, employing an extensive in vivo cross-linking strategy aided by structure modeling, we provide a detailed intersubunit contact survey of the entire sorting platform complex. Using the identified cross-links as signatures for pairwise intersubunit interactions in combination with systematic genetic deletions, we mapped the assembly process of this unique bacterial structure. Insights generated by this study could serve as the bases for the rational development of antivirulence strategies to combat several medically important bacterial pathogens.
Collapse
|
9
|
Mishra R, Chiang Tan Y, Adel Ahmed Abd El-Aal A, Lahiri C. Computational Identification of the Plausible Molecular Vaccine Candidates of Multidrug-Resistant Salmonella enterica. SALMONELLA SPP. - A GLOBAL CHALLENGE 2021. [DOI: 10.5772/intechopen.95856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Salmonella enterica serovars are responsible for the life-threatening, fatal, invasive diseases that are common in children and young adults. According to the most recent estimates, globally, there are approximately 11–20 million cases of morbidity and between 128,000 and 161,000 mortality per year. The high incidence rates of diseases like typhoid, caused by the serovars Typhi and Paratyphi, and gastroenteritis, caused by the non-typhoidal Salmonellae, have become worse, with the ever-increasing pathogenic strains being resistant to fluoroquinolones or almost even the third generation cephalosporins, such as ciprofloxacin and ceftriaxone. With vaccination still being one of the chosen methods of eradicating this disease, identification of candidate proteins, to be utilized for effective molecular vaccines, has probably remained a challenging issue. In our study here, we portray the usage of computational tools to analyze and predict potential vaccine candidate(s) for the multi-drug resistant serovars of S. enterica.
Collapse
|
10
|
Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci U S A 2021; 118:2114552118. [PMID: 34706941 DOI: 10.1073/pnas.2114552118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Type III secretion systems are multiprotein molecular machines required for the virulence of several important bacterial pathogens. The central element of these machines is the injectisome, a ∼5-Md multiprotein structure that mediates the delivery of bacterially encoded proteins into eukaryotic target cells. The injectisome is composed of a cytoplasmic sorting platform, and a membrane-embedded needle complex, which is made up of a multiring base and a needle-like filament that extends several nanometers from the bacterial surface. The needle filament is capped at its distal end by another substructure known as the tip complex, which is crucial for the translocation of effector proteins through the eukaryotic cell plasma membrane. Here we report the cryo-EM structure of the Salmonella Typhimurium needle tip complex docked onto the needle filament tip. Combined with a detailed analysis of structurally guided mutants, this study provides major insight into the assembly and function of this essential component of the type III secretion protein injection machine.
Collapse
|
11
|
Otten C, Seifert T, Hausner J, Büttner D. The Contribution of the Predicted Sorting Platform Component HrcQ to Type III Secretion in Xanthomonas campestris pv. vesicatoria Depends on an Internal Translation Start Site. Front Microbiol 2021; 12:752733. [PMID: 34721356 PMCID: PMC8553256 DOI: 10.3389/fmicb.2021.752733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.
Collapse
Affiliation(s)
- Christian Otten
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Tanja Seifert
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Hausner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniela Büttner
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
13
|
Tachiyama S, Skaar R, Chang Y, Carroll BL, Muthuramalingam M, Whittier SK, Barta ML, Picking WL, Liu J, Picking WD. Composition and Biophysical Properties of the Sorting Platform Pods in the Shigella Type III Secretion System. Front Cell Infect Microbiol 2021; 11:682635. [PMID: 34150677 PMCID: PMC8211105 DOI: 10.3389/fcimb.2021.682635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion. The SP consists of oligomeric Spa33 "pods" that associate with the basal body via MxiK and connect to the Spa47 ATPase via MxiN. The pods contain heterotrimers of Spa33 with one full-length copy associated with two copies of a C-terminal domain (Spa33C). The structure of Spa33C is known, but the precise makeup and structure of the pods in situ remains elusive. We show here that recombinant wild-type Spa33 can be prepared as a heterotrimer that forms distinct stable complexes with MxiK and MxiN. In two-hybrid analyses, association of the Spa33 complex with these proteins occurs via the full-length Spa33 component. Furthermore, these complexes each have distinct biophysical properties. Based on these properties, new high-resolution cryo-electron tomography data and architectural similarities between the Spa33 and flagellar FliM-FliN complexes, we provide a preliminary model of the Spa33 heterotrimers within the SP pods. From these findings and evolving models of SP interfaces and dynamics in the Yersinia and Salmonella T3SS, we suggest a model for SP function in which two distinct complexes come together within the context of the SP to contribute to form the complete pod structures during the recruitment of T3SS secretion substrates.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - Ryan Skaar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - Brittany L. Carroll
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | | | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Michael L. Barta
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States,Microbial Sciences Institute, Yale University, West Haven, CT, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States,*Correspondence: William D. Picking,
| |
Collapse
|
14
|
The Shigella Type III Secretion System: An Overview from Top to Bottom. Microorganisms 2021; 9:microorganisms9020451. [PMID: 33671545 PMCID: PMC7926512 DOI: 10.3390/microorganisms9020451] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Collapse
|
15
|
Structure of the Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J Struct Biol 2021; 213:107701. [PMID: 33549695 DOI: 10.1016/j.jsb.2021.107701] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 02/03/2023]
Abstract
Many pathogenic bacteria use the type III secretion system (T3SS), or injectisome, to secrete toxins into host cells. These protruding systems are primary targets for drug and vaccine development. Upon contact between injectisomes and host membranes, toxin secretion is triggered. How this works structurally and functionally is yet unknown. Using cryo-focused ion beam milling and cryo-electron tomography, we visualized injectisomes of Yersinia enterocolitica inside the phagosomes of infected human myeloid cells in a close-to-native state. We observed that a minimum needle length is required for injectisomes to contact the host membrane and bending of host membranes by some injectisomes that contact the host. Through subtomogram averaging, the structure of the entire injectisome was determined, which revealed structural differences in the cytosolic sorting platform compared to other bacteria. These findings contribute to understanding how injectisomes secrete toxins into host cells and provides the indispensable native context. The application of these cryo-electron microscopy techniques paves the way for the study of the 3D structure of infection-relevant protein complexes in host-pathogen interactions.
Collapse
|
16
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
17
|
Jensen JL, Yamini S, Rietsch A, Spiller BW. "The structure of the Type III secretion system export gate with CdsO, an ATPase lever arm". PLoS Pathog 2020; 16:e1008923. [PMID: 33048983 PMCID: PMC7584215 DOI: 10.1371/journal.ppat.1008923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/23/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Type III protein secretion systems (T3SS) deliver effector proteins from the Gram-negative bacterial cytoplasm into a eukaryotic host cell through a syringe-like, multi-protein nanomachine. Cytosolic components of T3SS include a portion of the export apparatus, which traverses the inner membrane and features the opening of the secretion channel, and the sorting complex for substrate recognition and for providing the energetics required for protein secretion. Two components critical for efficient effector export are the export gate protein and the ATPase, which are proposed to be linked by the central stalk protein of the ATPase. We present the structure of the soluble export gate homo-nonamer, CdsV, in complex with the central stalk protein, CdsO, of its cognate ATPase, both derived from Chlamydia pneumoniae. This structure defines the interface between these essential T3S proteins and reveals that CdsO engages the periphery of the export gate that may allow the ATPase to catalyze an opening between export gate subunits to allow cargo to enter the export apparatus. We also demonstrate through structure-based mutagenesis of the homologous export gate in Pseudomonas aeruginosa that mutation of this interface disrupts effector secretion. These results provide novel insights into the molecular mechanisms governing active substrate recognition and translocation through a T3SS. Many pathogenic Gram-negative bacteria utilize T3SS to export virulence factors in a well-regulated manner. Most component proteins of the T3SS are highly structurally conserved, capable of recognizing and secreting diverse effectors, which are recruited to the cytoplasmic sorting complex by chaperones. This work describes the molecular architecture of two essential components of a T3SS, identifies the interface between the components, and establishes the necessity of this interaction for effector secretion.
Collapse
Affiliation(s)
- Jaime L. Jensen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Shavait Yamini
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States of America
| | - Benjamin W. Spiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
18
|
LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution. Nat Commun 2020; 11:2381. [PMID: 32404906 PMCID: PMC7221075 DOI: 10.1038/s41467-020-16169-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
Collapse
|
19
|
Hu J, Worrall LJ, Strynadka NCJ. Towards capture of dynamic assembly and action of the T3SS at near atomic resolution. Curr Opin Struct Biol 2020; 61:71-78. [DOI: 10.1016/j.sbi.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022]
|
20
|
High-resolution view of the type III secretion export apparatus in situ reveals membrane remodeling and a secretion pathway. Proc Natl Acad Sci U S A 2019; 116:24786-24795. [PMID: 31744874 DOI: 10.1073/pnas.1916331116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type III protein secretion systems are essential virulence factors for many important pathogenic bacteria. The entire protein secretion machine is composed of several substructures that organize into a holostructure or injectisome. The core component of the injectisome is the needle complex, which houses the export apparatus that serves as a gate for the passage of the secreted proteins through the bacterial inner membrane. Here, we describe a high-resolution structure of the export apparatus of the Salmonella type III secretion system in association with the needle complex and the underlying bacterial membrane, both in isolation and in situ. We show the precise location of the core export apparatus components within the injectisome and bacterial envelope and demonstrate that their deployment results in major membrane remodeling and thinning, which may be central for the protein translocation process. We also show that InvA, a critical export apparatus component, forms a multiring cytoplasmic conduit that provides a pathway for the type III secretion substrates to reach the entrance of the export gate. Combined with structure-guided mutagenesis, our studies provide major insight into potential mechanisms of protein translocation and injectisome assembly.
Collapse
|
21
|
Molecular Organization of Soluble Type III Secretion System Sorting Platform Complexes. J Mol Biol 2019; 431:3787-3803. [DOI: 10.1016/j.jmb.2019.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
|
22
|
Singh N, Wagner S. Investigating the assembly of the bacterial type III secretion system injectisome by in vivo photocrosslinking. Int J Med Microbiol 2019; 309:151331. [DOI: 10.1016/j.ijmm.2019.151331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
|
23
|
Guo EZ, Desrosiers DC, Zalesak J, Tolchard J, Berbon M, Habenstein B, Marlovits T, Loquet A, Galán JE. A polymorphic helix of a Salmonella needle protein relays signals defining distinct steps in type III secretion. PLoS Biol 2019; 17:e3000351. [PMID: 31260457 PMCID: PMC6625726 DOI: 10.1371/journal.pbio.3000351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/12/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion.
Collapse
Affiliation(s)
- Emily Z. Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel C. Desrosiers
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jan Zalesak
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - James Tolchard
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Mélanie Berbon
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Thomas Marlovits
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Center for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE) and German Electron Synchrotron Centre (DESY), Hamburg, Germany
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nano-objects, CBMN-CNRS Université de Bordeaux, Pessac, France
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
24
|
Muthuramalingam M, Middaugh CR, Picking WD. The cytoplasmic portion of the T3SS inner membrane ring components sort into distinct families based on biophysical properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:787-793. [PMID: 31195141 DOI: 10.1016/j.bbapap.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Abstract
Type III secretion systems are used by many Gram-negative bacteria to inject effector proteins into eukaryotic cells to subvert their normal activities. Structurally conserved portions of the type III secretion apparatus include a: basal body located within the bacterial envelope; an exposed needle with tip complex that delivers effectors across the target cell membrane; and cytoplasmic sorting platform that selects cargo and powers secretion. While structurally conserved, the individual proteins that make up this nanomachine are typically not interchangeable though they do tend to fall into families. Here we selected a single domain from the inner membrane ring of the basal body from six different type III secretion systems (called SctD using a proposed unifying nomenclature). The selected domain creates an integral interface between the basal body and the sorting platform. Therefore, it represents a pivotal point between two distinct assemblies. All six protein domains possess a structural motif called a forkhead-associated-like (FHA-like) domain but differ greatly in their sequences and solution behaviors. These differences are used here to define family boundaries for these FHA-like domains. The data parallel, though not precisely, family boundaries defined by other proteins within the apparatus and by phylogenetic analysis. Ultimately, differences in the families are likely to reflect differences in the activities of these type III secretion systems or the host niches in which these pathogens are found.
Collapse
Affiliation(s)
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States of America
| | - William D Picking
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS 66047, United States of America; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, United States of America.
| |
Collapse
|
25
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
26
|
|