1
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
2
|
Froschauer K, Svensson SL, Gelhausen R, Fiore E, Kible P, Klaude A, Kucklick M, Fuchs S, Eggenhofer F, Yang C, Falush D, Engelmann S, Backofen R, Sharma CM. Complementary Ribo-seq approaches map the translatome and provide a small protein census in the foodborne pathogen Campylobacter jejuni. Nat Commun 2025; 16:3078. [PMID: 40159498 PMCID: PMC11955535 DOI: 10.1038/s41467-025-58329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
In contrast to transcriptome maps, bacterial small protein (≤50-100 aa) coding landscapes, including overlapping genes, are poorly characterized. However, an emerging number of small proteins have crucial roles in bacterial physiology and virulence. Here, we present a Ribo-seq-based high-resolution translatome map for the major foodborne pathogen Campylobacter jejuni. Besides conventional Ribo-seq, we employed translation initiation site (TIS) profiling to map start codons and also developed a translation termination site (TTS) profiling approach, which revealed stop codons not apparent from the reference genome in virulence loci. Our integrated approach combined with independent validation expanded the small proteome by two-fold, including CioY, a new 34 aa component of the CioAB oxidase. Overall, our study generates a high-resolution annotation of the C. jejuni coding landscape, provided in an interactive browser, and showcases a strategy for applying integrated Ribo-seq to other species to enrich our understanding of small proteomes.
Collapse
Affiliation(s)
- Kathrin Froschauer
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Elisabetta Fiore
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Philipp Kible
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany
| | - Alicia Klaude
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Martin Kucklick
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Stephan Fuchs
- Robert Koch Institute, Methodenentwicklung und Forschungsinfrastruktur (MF), Berlin, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Daniel Falush
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Susanne Engelmann
- Technische Universität Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Freiburg, Germany
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Würzburg, Germany.
| |
Collapse
|
3
|
De Martinis ECP, Alves VF, Pereira MG, Andrade LN, Abichabki N, Abramova A, Dannborg M, Bengtsson-Palme J. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front Immunol 2025; 16:1488699. [PMID: 40051624 PMCID: PMC11882522 DOI: 10.3389/fimmu.2025.1488699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Recent advances in cell culturing and DNA sequencing have dramatically altered the field of human microbiome research. Three-dimensional (3D) cell culture is an important tool in cell biology, in cancer research, and for studying host-microbe interactions, as it mimics the in vivo characteristics of the host environment in an in vitro system, providing reliable and reproducible models. This work provides an overview of the main 3D culture techniques applied to study interactions between host cells and pathogenic microorganisms, how these systems can be integrated with high-throughput molecular methods, and how multi-species model systems may pave the way forward to pinpoint interactions among host, beneficial microbes and pathogens.
Collapse
Affiliation(s)
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Neves Andrade
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nathália Abichabki
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Abramova
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
| | - Mirjam Dannborg
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Drobnič T, Cohen EJ, Calcraft T, Alzheimer M, Froschauer K, Svensson S, Hoffmann WH, Singh N, Garg SG, Henderson L, Umrekar TR, Nans A, Ribardo D, Pedaci F, Nord AL, Hochberg GKA, Hendrixson DR, Sharma CM, Rosenthal PB, Beeby M. Molecular model of a bacterial flagellar motor in situ reveals a "parts-list" of protein adaptations to increase torque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556779. [PMID: 39416179 PMCID: PMC11482838 DOI: 10.1101/2023.09.08.556779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One hurdle to understanding how molecular machines work, and how they evolve, is our inability to see their structures in situ. Here we describe a minicell system that enables in situ cryogenic electron microscopy imaging and single particle analysis to investigate the structure of an iconic molecular machine, the bacterial flagellar motor, which spins a helical propeller for propulsion. We determine the structure of the high-torque Campylobacter jejuni motor in situ, including the subnanometre-resolution structure of the periplasmic scaffold, an adaptation essential to high torque. Our structure enables identification of new proteins, and interpretation with molecular models highlights origins of new components, reveals modifications of the conserved motor core, and explain how these structures both template a wider ring of motor proteins, and buttress the motor during swimming reversals. We also acquire insights into universal principles of flagellar torque generation. This approach is broadly applicable to other membrane-residing bacterial molecular machines complexes.
Collapse
Affiliation(s)
- Tina Drobnič
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Tina Drobnič current affiliation: MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Eli J. Cohen
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tom Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mona Alzheimer
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Kathrin Froschauer
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Sarah Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
- Current affiliation: The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China 200031.
| | - William H. Hoffmann
- Centre de Biologie Structurale, Universite de Montpellier, CNRS, INSERM. Montpellier, France
| | - Nanki Singh
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sriram G. Garg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Louie Henderson
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Current affiliation: Peptone Ltd, 370 Grays Inn Road, London WC1X 8BB, UK
| | | | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Deborah Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Francesco Pedaci
- Centre de Biologie Structurale, Universite de Montpellier, CNRS, INSERM. Montpellier, France
| | - Ashley L. Nord
- Centre de Biologie Structurale, Universite de Montpellier, CNRS, INSERM. Montpellier, France
| | | | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Cynthia M. Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
5
|
König F, Svensson SL, Sharma CM. Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni. Nat Commun 2024; 15:5240. [PMID: 38897989 PMCID: PMC11187230 DOI: 10.1038/s41467-024-48986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.
Collapse
Affiliation(s)
- Fabian König
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
| |
Collapse
|
6
|
Ruddell B, Hassall A, Moss WN, Sahin O, Plummer PJ, Zhang Q, Kreuder AJ. Direct interaction of small non-coding RNAs CjNC140 and CjNC110 optimizes expression of key pathogenic phenotypes of Campylobacter jejuni. mBio 2023; 14:e0083323. [PMID: 37409826 PMCID: PMC10470494 DOI: 10.1128/mbio.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important players in modulating gene expression in bacterial pathogens, but their functions are largely undetermined in Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans. In this study, we elucidated the functions of sRNA CjNC140 and its interaction with CjNC110, a previously characterized sRNA involved in the regulation of several virulence phenotypes of C. jejuni. Inactivation of CjNC140 increased motility, autoagglutination, L-methionine concentration, autoinducer-2 production, hydrogen peroxide resistance, and early chicken colonization, indicating a primarily inhibitory role of CjNC140 for these phenotypes. Apart from motility, all these effects directly contrasted the previously demonstrated positive regulation by CjNC110, suggesting that CjNC110 and CjNC140 operate in an opposite manner to modulate physiologic processes in C. jejuni. RNAseq and northern blotting further demonstrated that expression of CjNC140 increased in the absence of CjNC110, while expression of CjNC110 decreased in the absence of CjNC140, suggesting a possibility of their direct interaction. Indeed, electrophoretic mobility shift assay demonstrated a direct binding between the two sRNAs via GA- (CjNC110) and CU- (CjNC140) rich stem-loops. Additionally, RNAseq and follow-up experiments identified that CjNC140 positively regulates p19, which encodes a key iron uptake transporter in Campylobacter. Furthermore, computational analysis revealed both CjNC140 and CjNC110 are highly conserved in C. jejuni, and the predicted secondary structures support CjNC140 as a functional homolog of the iron regulatory sRNA, RyhB. These findings establish CjNC140 and CjNC110 as a key checks-and- balances mechanism in maintaining homeostasis of gene expression and optimizing phenotypes critical for C. jejuni pathobiology. IMPORTANCE Gene regulation is critical to all aspects of pathogenesis of bacterial disease, and small non-coding RNAs (sRNAs) represent a new frontier in gene regulation of bacteria. In Campylobacter jejuni, the role of sRNAs remains largely unexplored. Here, we investigate the role of two highly conserved sRNAs, CjNC110 and CjNC140, and demonstrate that CjNC140 displays a primarily inhibitory role in contrast to a primarily activating role for CjNC110 for several key virulence-associated phenotypes. Our results also revealed that the sRNA regulatory pathway is intertwined with the iron uptake system, another virulence mechanism critical for in vivo colonization. These findings open a new direction for understanding C. jejuni pathobiology and identify potential targets for intervention for this major foodborne pathogen.
Collapse
Affiliation(s)
- Brandon Ruddell
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Alan Hassall
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Orhan Sahin
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- National Institute of Antimicrobial Resistance Research and Education (NIAMRRE), Iowa State University Research Park, Ames, Iowa, USA
| |
Collapse
|
7
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Abstract
Enteric bacterial infections contribute substantially to global disease burden and mortality, particularly in the developing world. In vitro 2D monolayer cultures have provided critical insights into the fundamental virulence mechanisms of a multitude of pathogens, including Salmonella enterica serovars Typhimurium and Typhi, Vibrio cholerae, Shigella spp., Escherichia coli and Campylobacter jejuni, which have led to the identification of novel targets for antimicrobial therapy and vaccines. In recent years, the arsenal of experimental systems to study intestinal infections has been expanded by a multitude of more complex models, which have allowed to evaluate the effects of additional physiological and biological parameters on infectivity. Organoids recapitulate the cellular complexity of the human intestinal epithelium while 3D bioengineered scaffolds and microphysiological devices allow to emulate oxygen gradients, flow and peristalsis, as well as the formation and maintenance of stable and physiologically relevant microbial diversity. Additionally, advancements in ex vivo cultures and intravital imaging have opened new possibilities to study the effects of enteric pathogens on fluid secretion, barrier integrity and immune cell surveillance in the intact intestine. This review aims to present a balanced and updated overview of current intestinal in vitro and ex vivo methods for modeling of enteric bacterial infections. We conclude that the different paradigms are complements rather than replacements and their combined use promises to further our understanding of host-microbe interactions and their impacts on intestinal health.
Collapse
Affiliation(s)
- Nayere Taebnia
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- CONTACT Ute Römling Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Volker M. Lauschke Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
9
|
Badillo-Mata JA, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments. Cells 2022; 11:3410. [PMID: 36359806 PMCID: PMC9656230 DOI: 10.3390/cells11213410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 08/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disorders affecting 0.5-1% of the population worldwide. As a disease of multifactorial etiology, its constant study has made it possible to unravel the pathophysiological processes that cause the illness. However, efficient and validated disease models are necessary to continue the search for new disease-modulating drugs. Technologies, such as 3D cell culture and organ-on-a-chip, have contributed to accelerating the prospecting of new therapeutic molecules and even helping to elucidate hitherto unknown aspects of the pathogenesis of multiple diseases. These technologies, where medicine and biotechnology converge, can be applied to understand RA. This review discusses the critical elements of RA pathophysiology and current treatment strategies. Next, we discuss 3D cell culture and apply these methodologies for rheumatological diseases and selected models for RA. Finally, we summarize the application of 3D cell culture for RA treatment.
Collapse
Affiliation(s)
- Jessica Andrea Badillo-Mata
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| | - Pavel Hayl Lugo-Fabres
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico
| |
Collapse
|
10
|
García-Díaz M, Cendra MDM, Alonso-Roman R, Urdániz M, Torrents E, Martínez E. Mimicking the Intestinal Host-Pathogen Interactions in a 3D In Vitro Model: The Role of the Mucus Layer. Pharmaceutics 2022; 14:1552. [PMID: 35893808 PMCID: PMC9331835 DOI: 10.3390/pharmaceutics14081552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intestinal mucus lines the luminal surface of the intestinal epithelium. This mucus is a dynamic semipermeable barrier and one of the first-line defense mechanisms against the outside environment, protecting the body against chemical, mechanical, or biological external insults. At the same time, the intestinal mucus accommodates the resident microbiota, providing nutrients and attachment sites, and therefore playing an essential role in the host-pathogen interactions and gut homeostasis. Underneath this mucus layer, the intestinal epithelium is organized into finger-like protrusions called villi and invaginations called crypts. This characteristic 3D architecture is known to influence the epithelial cell differentiation and function. However, when modelling in vitro the intestinal host-pathogen interactions, these two essential features, the intestinal mucus and the 3D topography are often not represented, thus limiting the relevance of the models. Here we present an in vitro model that mimics the small intestinal mucosa and its interactions with intestinal pathogens in a relevant manner, containing the secreted mucus layer and the epithelial barrier in a 3D villus-like hydrogel scaffold. This 3D architecture significantly enhanced the secretion of mucus. In infection with the pathogenic adherent invasive E. coli strain LF82, characteristic of Crohn's disease, we observed that this secreted mucus promoted the adhesion of the pathogen and at the same time had a protective effect upon its invasion. This pathogenic strain was able to survive inside the epithelial cells and trigger an inflammatory response that was milder when a thick mucus layer was present. Thus, we demonstrated that our model faithfully mimics the key features of the intestinal mucosa necessary to study the interactions with intestinal pathogens.
Collapse
Affiliation(s)
- María García-Díaz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Maria del Mar Cendra
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Raquel Alonso-Roman
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - María Urdániz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.d.M.C.); (R.A.-R.); (M.U.); (E.T.)
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Schaller-Ammann R, Kreß S, Feiel J, Schwagerle G, Priedl J, Birngruber T, Kasper C, Egger D. Advanced Online Monitoring of In Vitro Human 3D Full-Thickness Skin Equivalents. Pharmaceutics 2022; 14:pharmaceutics14071436. [PMID: 35890329 PMCID: PMC9315769 DOI: 10.3390/pharmaceutics14071436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Skin equivalents and skin explants are widely used for dermal penetration studies in the pharmacological development of drugs. Environmental parameters, such as the incubation and culture conditions affect cellular responses and thus the relevance of the experimental outcome. However, available systems such as the Franz diffusion chamber, only measure in the receiving culture medium, rather than assessing the actual conditions for cells in the tissue. We developed a sampling design that combines open flow microperfusion (OFM) sampling technology for continuous concentration measurements directly in the tissue with microfluidic biosensors for online monitoring of culture parameters. We tested our design with real-time measurements of oxygen, glucose, lactate, and pH in full-thickness skin equivalent and skin explants. Furthermore, we compared dermal penetration for acyclovir, lidocaine, and diclofenac in skin equivalents and skin explants. We observed differences in oxygen, glucose, and drug concentrations in skin equivalents compared to the respective culture medium and to skin explants.
Collapse
Affiliation(s)
- Roland Schaller-Ammann
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Sebastian Kreß
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Jürgen Feiel
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Gerd Schwagerle
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Joachim Priedl
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
| | - Thomas Birngruber
- Health—Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; (R.S.-A.); (J.F.); (G.S.); (J.P.)
- Correspondence: (T.B.); (D.E.)
| | - Cornelia Kasper
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
| | - Dominik Egger
- Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, University of Natural, Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (S.K.); (C.K.)
- Correspondence: (T.B.); (D.E.)
| |
Collapse
|
12
|
Elzinga J, van der Lugt B, Belzer C, Steegenga WT. Characterization of increased mucus production of HT29-MTX-E12 cells grown under Semi-Wet interface with Mechanical Stimulation. PLoS One 2021; 16:e0261191. [PMID: 34928974 PMCID: PMC8687553 DOI: 10.1371/journal.pone.0261191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
The intestinal mucus layer plays a crucial role in human health. To study intestinal mucus function and structure in vitro, the mucus-producing intestinal cell line HT29-MTX-E12 has been commonly used. However, this cell line produces only low amounts of the intestine-specific MUC2. It has been shown previously that HT29-MTX-E12 cells cultured under Semi-Wet interface with Mechanical Stimulation (SWMS) produced higher amounts of MUC2, concomitant with a thicker mucus layer, compared to cells cultured conventionally. However, it remains unknown which underlying pathways are involved. Therefore, we aimed to further explore the cellular processes underlying the increased MUC2 production by HT29-MTX-E12 cells grown under SWMS conditions. Cells grown on Transwell membranes for 14 days under static and SWMS conditions (after cell seeding and attachment) were subjected to transcriptome analysis to investigate underlying molecular pathways at gene expression level. Caco-2 and LS174T cell lines were included as references. We characterized how SWMS conditions affected HT29-MTX-E12 cells in terms of epithelial barrier integrity, by measuring transepithelial electrical resistance, and cell metabolism, by monitoring pH and lactate production per molecule glucose of the conditioned medium. We confirmed higher MUC2 production under SWMS conditions at gene and protein level and demonstrated that this culturing method primarily stimulated cell growth. In addition, we also found evidence for a more aerobic cell metabolism under SWMS, as shown previously for similar models. In summary, we suggest different mechanisms by which MUC2 production is enhanced under SWMS and propose potential applications of this model in future studies.
Collapse
Affiliation(s)
- Janneke Elzinga
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Benthe van der Lugt
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
14
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Svensson SL, Sharma CM. Small RNAs that target G-rich sequences are generated by diverse biogenesis pathways in Epsilonproteobacteria. Mol Microbiol 2021; 117:215-233. [PMID: 34818434 DOI: 10.1111/mmi.14850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs (sRNAs) are widespread post-transcriptional regulators controlling bacterial stress responses and virulence. Nevertheless, little is known about how they arise and evolve. Homologues can be difficult to identify beyond the strain level using sequence-based approaches, and similar functionalities can arise by convergent evolution. Here, we found that the virulence-associated CJnc190 sRNA of the foodborne pathogen Campylobacter jejuni resembles the RepG sRNA from the gastric pathogen Helicobacter pylori. However, while both sRNAs bind G-rich sites in their target mRNAs using a C/U-rich loop, they largely differ in their biogenesis. RepG is transcribed from a stand-alone gene and does not require processing, whereas CJnc190 is transcribed from two promoters as precursors that are processed by RNase III and also has a cis-encoded antagonist, CJnc180. By comparing CJnc190 homologues in diverse Campylobacter species, we show that RNase III-dependent processing of CJnc190 appears to be a conserved feature even outside of C. jejuni. We also demonstrate the CJnc180 antisense partner is expressed in C. coli, yet here might be derived from the 3'UTR of the upstream flagella-related gene. Our analysis of G-tract targeting sRNAs in Epsilonproteobacteria demonstrates that similar sRNAs can have markedly different biogenesis pathways.
Collapse
Affiliation(s)
- Sarah L Svensson
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, 97080, Germany
| |
Collapse
|
16
|
Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host models for infection biology - a review of methods. Exp Mol Med 2021; 53:1471-1482. [PMID: 34663936 PMCID: PMC8521091 DOI: 10.1038/s12276-021-00629-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Infectious diseases are a major threat worldwide. With the alarming rise of antimicrobial resistance and emergence of new potential pathogens, a better understanding of the infection process is urgently needed. Over the last century, the development of in vitro and in vivo models has led to remarkable contributions to the current knowledge in the field of infection biology. However, applying recent advances in organoid culture technology to research infectious diseases is now taking the field to a higher level of complexity. Here, we describe the current methods available for the study of infectious diseases using organoid cultures.
Collapse
Affiliation(s)
- Carmen Aguilar
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - Marta Alves da Silva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Mastura Neyazi
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - I. Anna S. Olsson
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Sina Bartfeld
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
17
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
18
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
19
|
Aguilar-Rojas A, Olivo-Marin JC, Guillen N. Human intestinal models to study interactions between intestine and microbes. Open Biol 2020; 10:200199. [PMID: 33081633 PMCID: PMC7653360 DOI: 10.1098/rsob.200199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Implementations of suitable in vitro cell culture systems of the human intestine have been essential tools in the study of the interaction among organs, commensal microbiota, pathogens and parasites. Due to the great complexity exhibited by the intestinal tissue, researchers have been developing in vitro/ex vivo systems to diminish the gap between conventional cell culture models and the human intestine. These models are able to reproduce different structures and functional aspects of the tissue. In the present review, information is recapitulated on the most used models, such as cell culture, intestinal organoids, scaffold-based three-dimensional models, and organ-on-a-chip and their use in studying the interaction between human intestine and microbes, and their advantages and limitations are also discussed.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Unidad Médica de Alta Especialidad en Ginecología y Obstetricia No. 4 ‘Dr. Luis Castelazo Ayala’, Av. Río Magdalena No. 289, Col. Tizapán San Ángel, C.P. 01090 Ciudad de México, México
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, UMR3691, 25 Rue du Dr Roux, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Unité d'Analyse d'Images Biologiques, 25 Rue du Dr Roux, 75015 Paris, France
- Centre National de la Recherche Scientifique, ERL9195, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
20
|
Small Noncoding RNA CjNC110 Influences Motility, Autoagglutination, AI-2 Localization, Hydrogen Peroxide Sensitivity, and Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 88:IAI.00245-20. [PMID: 32366573 DOI: 10.1128/iai.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.
Collapse
|