1
|
Aimola G, Wight DJ, Flamand L, Kaufer BB. Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology. Microbiol Spectr 2023; 11:e0076423. [PMID: 36926973 PMCID: PMC10100985 DOI: 10.1128/spectrum.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres. IMPORTANCE Human herpesvirus 6 (HHV-6) infects almost all humans and integrates into the telomeres of latently infected cells to persist in the host for life. In addition, HHV-6 can also integrate into the telomeres of germ cells, which results in about 80 million individuals worldwide who carry the virus in every cell of their body and can pass it on to their offspring. In this study, we develop the first system that allows excision of the integrated HHV-6 genome from host telomeres using CRISPR/Cas9 technology. Our data revealed that the integrated HHV-6 genome can be efficiently removed from the telomeres of latently infected cells and cells of patients harboring the virus in their germ line. Virus removal could be achieved with both stable and transient Cas9 expression, without inducing viral reactivation.
Collapse
Affiliation(s)
- Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Impact of Host Telomere Length on HHV-6 Integration. Viruses 2022; 14:v14091864. [PMID: 36146670 PMCID: PMC9505050 DOI: 10.3390/v14091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Human herpesvirus 6A and 6B are two closely related viruses that infect almost all humans. In contrast to most herpesviruses, HHV-6A/B can integrate their genomes into the telomeres during the infection process. Both viruses can also integrate in germ cells and subsequently be inherited in children. How HHV-6A/B integrate into host telomeres and the consequences of this remain a subject of active research. Here, we developed a method to measure telomere length by quantitative fluorescence in situ hybridization, confocal microscopy, and computational processing. This method was validated using a panel of HeLa cells having short or long telomeres. These cell lines were infected with HHV-6A, revealing that the virus could efficiently integrate into telomeres independent of their length. Furthermore, we assessed the telomere lengths after HHV-6A integration and found that the virus-containing telomeres display a variety of lengths, suggesting that either telomere length is restored after integration or telomeres are not shortened by integration. Our results highlight new aspects of HHV-6A/B biology and the role of telomere length on virus integration.
Collapse
|
3
|
Collin V, Flamand L. [The importance of telomeres in human herpesvirus-6A/B infections]. Med Sci (Paris) 2022; 38:168-176. [PMID: 35179471 DOI: 10.1051/medsci/2022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herpesviruses are undisputed masters of disguise. The ability to become invisible to the immune system effectors is a complex process resting on a variety of stealth approaches. Among these, human herpesviruses-6A and -6B (HHV-6A/B) have developed the unique ability to integrate their genome within the ends of chromosomes allowing viral persistence in the absence of viral protein expression. This aptitude, unique to HHV-6A/B among human herpesviruses, requires close interactions between the telomeric regions of chromosomes and the viral genome. In this review article, the biology of telomeres and the mechanisms responsible for viral integration are discussed. In closing, the possible biological consequences of HHV-6A/B integration into chromosomal DNA are discussed.
Collapse
Affiliation(s)
- Vanessa Collin
- Axe des maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada
| | - Louis Flamand
- Axe des maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada - Département de microbiologie, maladies infectieuses et immunologie, Faculté de médecine, Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada
| |
Collapse
|
4
|
Duckworth A, Longhurst HJ, Paxton JK, Scotton CJ. The Role of Herpes Viruses in Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:704222. [PMID: 34368196 PMCID: PMC8339799 DOI: 10.3389/fmed.2021.704222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary fibrosis (PF) is a serious lung disease which can result from known genetic or environmental exposures but is more commonly idiopathic (IPF). In familial PF (FPF), the majority of identified causal genes play key roles in the maintenance of telomeres, the protective end structures of chromosomes. Recent evidence suggests that short telomeres may also be implicated causally in a significant proportion of idiopathic cases. The possible involvement of herpes viruses in PF disease incidence and progression has been examined for many years, with some studies showing strong, statistically significant associations and others reporting no involvement. Evidence is thus polarized and remains inconclusive. Here we review the reported involvement of herpes viruses in PF in both animals and humans and present a summary of the evidence to date. We also present several possible mechanisms of action of the different herpes viruses in PF pathogenesis, including potential contributions to telomere attrition and cellular senescence. Evidence for antiviral treatment in PF is very limited but suggests a potential benefit. Further work is required to definitely answer the question of whether herpes viruses impact PF disease onset and progression and to enable the possible use of targeted antiviral treatments to improve clinical outcomes.
Collapse
Affiliation(s)
- Anna Duckworth
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Hilary J. Longhurst
- Department of Medicine, University of Auckland, Auckland, New Zealand
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Jane K. Paxton
- Dyskeratosis Congenita (DC) Action, London, United Kingdom
| | - Chris J. Scotton
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Evasion of the Host Immune Response by Betaherpesviruses. Int J Mol Sci 2021; 22:ijms22147503. [PMID: 34299120 PMCID: PMC8306455 DOI: 10.3390/ijms22147503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune system boasts a diverse array of strategies for recognizing and eradicating invading pathogens. Human betaherpesviruses, a highly prevalent subfamily of viruses, include human cytomegalovirus (HCMV), human herpesvirus (HHV) 6A, HHV-6B, and HHV-7. These viruses have evolved numerous mechanisms for evading the host response. In this review, we will highlight the complex interplay between betaherpesviruses and the human immune response, focusing on protein function. We will explore methods by which the immune system first responds to betaherpesvirus infection as well as mechanisms by which viruses subvert normal cellular functions to evade the immune system and facilitate viral latency, persistence, and reactivation. Lastly, we will briefly discuss recent advances in vaccine technology targeting betaherpesviruses. This review aims to further elucidate the dynamic interactions between betaherpesviruses and the human immune system.
Collapse
|
6
|
Abstract
The "omics" revolution of recent years has simplified the study of RNA transcripts produced during viral infection and under specific defined conditions. In the quest to find new and differentially expressed transcripts during the course of human Herpesvirus 6B (HHV-6B) infection, we made use of large-scale RNA sequencing to analyze the HHV-6B transcriptome during productive infection of human Molt-3 T-cells. Analyses were performed at different time points following infection and specific inhibitors were used to classify the kinetic class of each open reading frame (ORF) reported in the annotated genome of HHV-6B Z29 strain. The initial search focussed on HHV-6B-specific reads matching new HHV-6B transcripts. Differential expression of new HHV-6B transcripts were observed in all samples analyzed. The presence of many of these new HHV-6B transcripts were confirmed by RT-PCR and Sanger sequencing. Many of these transcripts represented new splice variants of previously reported ORFs, including some transcripts that have yet to be defined. Overall, our work demonstrates the diversity and the complexity of the HHV-6B transcriptome.IMPORTANCERNA sequencing (RNA-seq) is an important tool for studying RNA transcripts, particularly during active viral infection. We made use of RNA-seq to study human Herpesvirus 6B (HHV-6B) infection. Using six different time points, we were able to identify the presence of differentially spliced genes at 6, 9, 12, 24, 48 and 72 hours post-infection. Determination of the RNA profiles in the presence of cycloheximide (CHX) or phosphonoacetic acid (PAA) also permitted identification of the kinetic class of each ORF described in the annotated GenBank file. We also identified new spliced transcripts for certain genes and evaluated their relative expression over time. These data and next-generation sequencing (NGS) of the viral DNA have led us to propose a new version of the HHV-6B Z29 GenBank annotated file, without changing ORF names in order to facilitate trace back and correlate our work with previous studies on HHV-6B.
Collapse
|
7
|
Komaroff AL, Rizzo R, Ecker JL. Human Herpesviruses 6A and 6B in Reproductive Diseases. Front Immunol 2021; 12:648945. [PMID: 33841432 PMCID: PMC8027340 DOI: 10.3389/fimmu.2021.648945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Human herpesviruses 6A (HHV-6A) and human herpesvirus 6B (HHV-6B)—collectively, HHV-6A/B—are recently-discovered but ancient human viruses. The vast majority of people acquire one or both viruses, typically very early in life, producing an ineradicable lifelong infection. The viruses have been linked to several neurological, pulmonary and hematological diseases. In early human history, the viruses on multiple occasions infected a germ cell, and integrated their DNA into a human chromosome. As a result, about 1% of humans are born with the full viral genome present in every cell, with uncertain consequences for health. HHV-6A may play a role in 43% of cases of primary unexplained infertility. Both the inherited and acquired viruses may occasionally trigger several of the factors that are important in the pathogenesis of preeclampsia. Transplacental infection occurs in 1-2% of pregnancies, with some evidence suggesting adverse health consequences for the child. While emerging knowledge about these viruses in reproductive diseases is not sufficient to suggest any changes in current practice, we write this review to indicate the need for further research that could prove practice-changing.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Division of General Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jeffrey L Ecker
- Department of Obstetrics, Gynecology and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine SPR, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. eLife 2021; 10:70452. [PMID: 34545807 PMCID: PMC8492063 DOI: 10.7554/elife.70452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Colin D Veal
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Andrei J Parker
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Diana Martin
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Simon PR Romaine
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom,NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center GroningenGroningenNetherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec CityQuébecCanada
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Nicola J Royle
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
9
|
The U94 Gene of Human Herpesvirus 6: A Narrative Review of Its Role and Potential Functions. Cells 2020; 9:cells9122608. [PMID: 33291793 PMCID: PMC7762089 DOI: 10.3390/cells9122608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is a β-herpesvirus that is highly prevalent in the human population. HHV-6 comprises two recognized species (HHV-6A and HHV-6B). Despite different cell tropism and disease association, HHV-6A/B show high genome homology and harbor the conserved U94 gene, which is limited to HHV-6 and absent in all the other human herpesviruses. U94 has key functions in the virus life cycle and associated diseases, having demonstrated or putative roles in virus replication, integration, and reactivation. During natural infection, U94 elicits an immune response, and the prevalence and extent of the anti-U94 response are associated with specific diseases. Notably, U94 can entirely reproduce some virus effects at the cell level, including inhibition of cell migration, induction of cytokines and HLA-G expression, and angiogenesis inhibition, supporting a direct U94 role in the development of HHV-6-associated diseases. Moreover, specific U94 properties, such as the ability to modulate angiogenesis pathways, have been exploited to counteract cancer development. Here, we review the information available on this key HHV-6 gene, highlighting its potential uses.
Collapse
|
10
|
Collin V, Gravel A, Kaufer BB, Flamand L. The Promyelocytic Leukemia Protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16:e1008683. [PMID: 32658923 PMCID: PMC7394443 DOI: 10.1371/journal.ppat.1008683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a betaherpesvirus capable of integrating its genome into the telomeres of host chromosomes. Until now, the cellular and/or viral proteins facilitating HHV-6B integration have remained elusive. Here we show that a cellular protein, the promyelocytic leukemia protein (PML) that forms nuclear bodies (PML-NBs), associates with the HHV-6B immediate early 1 (IE1) protein at telomeres. We report enhanced levels of SUMOylated IE1 in the presence of PML and have identified a putative SUMO Interacting Motif (SIM) within IE1, essential for its nuclear distribution, overall SUMOylation and association with PML to nuclear bodies. Furthermore, using PML knockout cell lines we made the original observation that PML is required for efficient HHV-6B integration into host chromosomes. Taken together, we could demonstrate that PML-NBs are important for IE1 multiSUMOylation and that PML plays an important role in HHV-6B integration into chromosomes, a strategy developed by this virus to maintain its genome in its host over long periods of time. Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that can be life threatening in immunocompromised patients. HHV-6B is among a few other herpesviruses that integrate their genome in host chromosomes as a mean to establish dormancy. Integration of HHV-6B occurs in host telomeres, a region that protects our genome from deterioration and controls the cellular lifespan. To date, the mechanisms leading to HHV-6B integration remain elusive. Our laboratory has identified that the IE1 protein of HHV-6B associates with PML, a cellular protein that is responsible for the regulation of important cellular mechanisms including DNA recombination and repair. With the objective of understanding how IE1 is brought to PML, we discovered that PML aids the SUMOylation of IE1. This finding led us to identify a putative SUMO interaction motif on IE1 that is essentials for both its SUMOylation and IE1 oligomerization with PML-NBs. We next studied the role of PML on HHV-6B integration and identified that cells that are deficient for PML were less susceptible to HHV-6B integration. These results correlate with the fact that PML influences IE1 localization at telomeres, the site of HHV-6B integration. Our study further contributes to our understanding of the mechanisms leading to HHV-6B chromosomal integration.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | | | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|