1
|
Ge J, Tian T, Liu Y, Li X, Li Q, Song G, Gao P, Zheng F, Chu Y. Mesomycoplasma (Mycoplasma) ovipneumoniae dihydrolipoamide dehydrogenase is an immunogenic plasminogen binding protein and a putative adhesin. Vet Microbiol 2024; 299:110302. [PMID: 39550931 DOI: 10.1016/j.vetmic.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
The interaction of Mesomycoplasma (Mycoplasma) ovipneumoniae (M. ovipneumoniae) with host cells is a pivotal step in the infection process, underlining the necessity to develop vaccines and therapeutic approaches targeting the pathogen's key invasion mechanisms. The bacterium's capacity for adherence, invasion, and subsequent evasion of the host immune response underpins its pathogenicity, rendering adherence genes feasible vaccine targets. This study focuses on pyruvate dehydrogenase complex component E3 (PdhD), a membrane-anchored surface protein implicated in these pathogenic processes. Bioinformatics analysis reveals the conservation of PdhD sequence within M. ovipneumoniae. Membrane protein extraction, immunoblotting and ELISA assay have confirmed the presence of PdhD on the M. ovipneumoniae surface and cytoplasm, suggesting its multifunctionality. Our research employed antibody inhibition assays to characterize the bacterial adhesion suppression by anti-PdhD antibodies, complemented by bactericidal complement assays, supporting its candidacy as a putative vaccine target. The ELISA binding assay substantiated that PdhD binded to plasminogen (Plg) in a dose-dependent manner. Notably, PdhD is also involved in biofilm formation. The inhibitory effect of anti-PdhD sera on biofilm formation is congruent with novel therapeutic strategies targeting related mycoplasmas. This study reports the characterization of the first virulence-associated protein PdhD of M. ovipneumoniae and suggests its potential as a vaccine target to combat M. ovipneumoniae infection.
Collapse
Affiliation(s)
- Jiazhen Ge
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Tongtong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yijian Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qianqian Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Guodong Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Fuying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China.
| |
Collapse
|
2
|
Gelgie AE, Schneider P, Citti C, Dordet-Frisoni E, Gillespie BE, Almeida RA, Agga GE, Amoah YS, Shpigel NY, Kerro Dego O, Lysnyansky I. Mycoplasma bovis 5'-nucleotidase is a virulence factor conferring mammary fitness in bovine mastitis. PLoS Pathog 2024; 20:e1012628. [PMID: 39531484 DOI: 10.1371/journal.ppat.1012628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Nucleases and 5' nucleotidase (5'-NT) play essential roles in cell biology and are often associated with bacterial virulence. In Mycoplasma spp., which have limited metabolic capacities and rely on nutrient availability, these enzymes are of significant importance for nucleotide salvage. This study explores the potential role of 2 membrane-associated lipoproteins, the major nuclease MnuA and 5'-NT, in Mycoplasma bovis mastitis. Mutants deficient in MnuA (mnuA::Tn) and in 5'-NT (0690::Tn) were identified through genome-wide transposon mutagenesis of M. bovis PG45 type strain and their fitness and virulence were assessed both in vitro, in axenic medium, and in vivo, using murine and cow mastitis models. The mnuA::Tn mutant demonstrated reduced nuclease activity, while 0690::Tn exhibited slow log-phase growth and impaired hydrolase activity towards nucleotides as well as deoxynucleotides (dAMP and dGMP). In comparison to the parent strain, the 0690::Tn mutant displayed markedly reduced fitness, as evidenced by a significant decrease or even absence in post-challenge mycoplasma counts in murine and cow mammary tissues, respectively. Moreover, the 0690::Tn mutant failed to induce mastitis in both experimental models. Conversely, the mnuA::Tn mutant induced inflammation in murine mammary glands, characterized by neutrophil infiltration and increased expression of major inflammatory genes. In cows, the mnuA::Tn was able to cause an increase in somatic cell counts in a manner comparable to the wild type, recruit neutrophils, and induce mastitis. Collectively, these findings provide complementary insights, revealing that disruption of 5'-NT significantly attenuated M. bovis pathogenicity, whereas a MnuA-deficient mutant retained the ability to cause mastitis.
Collapse
Affiliation(s)
- Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Peleg Schneider
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Christine Citti
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Emilie Dordet-Frisoni
- Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Barbara E Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Raúl A Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| | - Yaa Serwaah Amoah
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Mycoplasma Unit, Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, United States of America
| | - Inna Lysnyansky
- Mycoplasma Unit, Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
3
|
Premachandre CK, Vaz PK, Sharma S, Kanci Condello A, Browning GF, Wawegama NK. Genes required for survival and proliferation of Mycoplasma bovis in association with host cells. Appl Environ Microbiol 2024; 90:e0068724. [PMID: 38864628 PMCID: PMC11267936 DOI: 10.1128/aem.00687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024] Open
Abstract
Mycoplasma bovis is an important emerging pathogen of cattle and bison, but our understanding of the genetic basis of its interactions with its host is limited. The aim of this study was to identify genes of M. bovis required for interaction and survival in association with host cells. One hundred transposon-induced mutants of the type strain PG45 were assessed for their capacity to survive and proliferate in Madin-Darby bovine kidney cell cultures. The growth of 19 mutants was completely abrogated, and 47 mutants had a prolonged doubling time compared to the parent strain. All these mutants had a similar growth pattern to the parent strain PG45 in the axenic media. Thirteen genes previously classified as dispensable for the axenic growth of M. bovis were found to be essential for the growth of M. bovis in association with host cells. In most of the mutants with a growth-deficient phenotype, the transposon was inserted into a gene involved in transportation or metabolism. This included genes coding for ABC transporters, proteins related to carbohydrate, nucleotide and protein metabolism, and membrane proteins essential for attachment. It is likely that these genes are essential not only in vitro but also for the survival of M. bovis in infected animals. IMPORTANCE Mycoplasma bovis causes chronic bronchopneumonia, mastitis, arthritis, keratoconjunctivitis, and reproductive tract disease in cattle around the globe and is an emerging pathogen in bison. Control of mycoplasma infections is difficult in the absence of appropriate antimicrobial treatment or effective vaccines. A comprehensive understanding of host-pathogen interactions and virulence factors is important to implement more effective control methods against M. bovis. Recent studies of other mycoplasmas with in vitro cell culture models have identified essential virulence genes of mycoplasmas. Our study has identified genes of M. bovis required for survival in association with host cells, which will pave the way to a better understanding of host-pathogen interactions and the role of specific genes in the pathogenesis of disease caused by M. bovis.
Collapse
Affiliation(s)
- Chintha K. Premachandre
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Shukriti Sharma
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Kanci Condello
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K. Wawegama
- Asia-Pacific Center for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Lu D, Chen J, Zhang M, Fu Y, Raheem A, Chen Y, Chen X, Hu C, Chen J, Schieck E, Zhao G, Guo A. Identification of potential nucleomodulins of Mycoplasma bovis by direct biotinylation and proximity-based biotinylation approaches. Front Microbiol 2024; 15:1421585. [PMID: 39044956 PMCID: PMC11263210 DOI: 10.3389/fmicb.2024.1421585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is a significant bovine pathogen associated with various diseases, including bovine bronchopneumonia and mastitis resulting in substantial economic losses within the livestock industry. However, the development of effective control measures for M. bovis is hindered by a limited understanding of its virulence factors and pathogenesis. Nucleomodulins are newly identified secreted proteins of bacteria that internalize the host nuclei to regulate host cell gene expression and serve as critical virulence factors. Although recent reports have initiated exploration of mycoplasma nucleomodulins, the efficiency of conventional techniques for identification is very limited. Therefore, this study aimed to establish high-throughput methods to identify novel nucleomodulins of M. bovis. Using a direct biotinylation (DB) approach, a total of 289 proteins were identified including 66 high abundant proteins. In parallel, the use of proximity-based biotinylation (PBB), identified 28 proteins. Finally, seven nucleomodulins were verified to be nuclear by transfecting the bovine macrophage cell line BoMac with the plasmids encoding EGFP-fused proteins and observed with Opera Phenix, including the known nucleomodulin MbovP475 and six novel nucleomodulins. The novel nucleomodulins were four ribosomal proteins (MbovP599, MbovP678, MbovP710, and MbovP712), one transposase (MbovP790), and one conserved hypothetical protein (MbovP513). Among them, one unique nucleomodulin MbovP475 was identified with DB, two unique nucleomodulins (MbovP513 and MbovP710) with PBB, and four nucleomodulins by both. Overall, these findings established a foundation for further research on M. bovis nucleomodulin-host interactions for identification of new virulence factors.
Collapse
Affiliation(s)
- Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiongxi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Menghan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Zhang H, Zhang Y, Lu D, Chen X, Chen Y, Hu C, Guo A. MbovP0725, a secreted serine/threonine phosphatase, inhibits the host inflammatory response and affects metabolism in Mycoplasma bovis. mSystems 2024; 9:e0089123. [PMID: 38440990 PMCID: PMC11019793 DOI: 10.1128/msystems.00891-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1β, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal & Veterinary Sciences, Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Zhu X, Baranowski E, Hao Z, Li X, Zhao G, Dong Y, Chen Y, Hu C, Chen H, Citti C, Wang A, Guo A. An atypical GdpP enzyme linking cyclic nucleotide metabolism to osmotic tolerance and gene regulation in Mycoplasma bovis. Front Microbiol 2023; 14:1250368. [PMID: 38098652 PMCID: PMC10720645 DOI: 10.3389/fmicb.2023.1250368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Nucleotide second messengers play an important role in bacterial adaptation to environmental changes. Recent evidence suggests that some of these regulatory molecular pathways were conserved upon the degenerative evolution of the wall-less mycoplasmas. We have recently reported the occurrence of a phosphodiesterase (PDE) in the ruminant pathogen Mycoplasma bovis, which was involved in c-di-AMP metabolism. In the present study, we demonstrate that the genome of this mycoplasma species encodes a PDE of the GdpP family with atypical DHH domains. Characterization of M. bovis GdpP (MbovGdpP) revealed a multifunctional PDE with unusual nanoRNase and single-stranded DNase activities. The alarmone ppGpp was found unable to inhibit c-di-NMP degradation by MbovGdpP but efficiently blocked its nanoRNase activity. Remarkably, MbovGdpP was found critical for the osmotic tolerance of M. bovis under K+ and Na+ conditions. Transcriptomic analyses further revealed the biological importance of MbovGdpP in tRNA biosynthesis, pyruvate metabolism, and several steps in genetic information processing. This study is an important step in understanding the role of PDE and nucleotide second messengers in the biology of a minimal bacterial pathogen.
Collapse
Affiliation(s)
- Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xixi Li
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Dong
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | | | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| |
Collapse
|
7
|
Liu S, Li Z, Lan S, Hao H, Jin X, Liang J, Baz AA, Yan X, Gao P, Chen S, Chu Y. LppA is a novel plasminogen receptor of Mycoplasma bovis that contributes to adhesion by binding the host extracellular matrix and Annexin A2. Vet Res 2023; 54:107. [PMID: 37978536 PMCID: PMC10657132 DOI: 10.1186/s13567-023-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023] Open
Abstract
Mycoplasma bovis is responsible for various inflammatory diseases in cattle. The prevention and control of M. bovis are complicated by the absence of effective vaccines and the emergence of multidrug-resistant strains, resulting in substantial economic losses worldwide in the cattle industry. Lipoproteins, vital components of the Mycoplasmas cell membrane, are deemed potent antigens for eliciting immune responses in the host upon infection. However, the functions of lipoproteins in M. bovis remain underexplored due to their low sequence similarity with those of other bacteria and the scarcity of genetic manipulation tools for M. bovis. In this study, the lipoprotein LppA was identified in all examined M. bovis strains. Utilizing immunoelectron microscopy and Western blotting, it was observed that LppA localizes to the surface membrane. Recombinant LppA demonstrated dose-dependent adherence to the membrane of embryonic bovine lung (EBL) cells, and this adhesion was inhibited by anti-LppA serum. In vitro binding assays confirmed LppA's ability to associate with fibronectin, collagen IV, laminin, vitronectin, plasminogen, and tPA, thereby facilitating the conversion of plasminogen to plasmin. Moreover, LppA was found to bind and enhance the accumulation of Annexin A2 (ANXA2) on the cell membrane. Disrupting LppA in M. bovis significantly diminished the bacterium's capacity to adhere to EBL cells, underscoring LppA's function as a bacterial adhesin. In conclusion, LppA emerges as a novel adhesion protein that interacts with multiple host extracellular matrix proteins and ANXA2, playing a crucial role in M. bovis's adherence to host cells and dissemination. These insights substantially deepen our comprehension of the molecular pathogenesis of M. bovis.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xiangrui Jin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Jinjia Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
- Key Laboratory of Veterinary Etilogoical Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, 730046, China.
| |
Collapse
|
8
|
Lan S, Li Z, Hao H, Liu S, Huang Z, Bai Y, Li Y, Yan X, Gao P, Chen S, Chu Y. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J 2023; 37:e23176. [PMID: 37665592 DOI: 10.1096/fj.202300678r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Mycoplasma spp., the smallest self-replicating and genome-reduced organisms, have raised a great concern in both the medical and veterinary fields due to their pathogenicity. The molecular determinants of these wall-less bacterium efficiently use their limited genes to ensure successful infection of the host remain unclear. In the present study, we used the ruminant pathogen Mycoplasma bovis as a model to identify the key factors for colonization and invasion into host cells. We constructed a nonredundant fluorescent transposon mutant library of M. bovis using a modified transposon plasmid, and identified 34 novel adhesion-related genes based on a high-throughput screening approach. Among them, the ΔLppB mutant exhibited the most apparent decrease in adhesion to embryonic bovine lung (EBL) cells. The surface-localized lipoprotein LppB, which is highly conserved in Mycoplasma species, was then confirmed as a key factor for M. bovis adhesion with great immunogenicity. LppB interacted with various components (fibronectin, vitronectin, collagen IV, and laminin) of host extracellular matrix (ECM) and promoted plasminogen activation through tPA to degrade ECM. The 439-502 amino acid region of LppB is a critical domain, and F465 and Y493 are important residues for the plasminogen activation activity. We further revealed LppB as a key factor facilitating internalization through clathrin- and lipid raft-mediated endocytosis, which helps the Mycoplasma invade the host cells. Our study indicates that LppB plays a key role in Mycoplasma infection and is a potential new therapeutic and vaccine target for Mycoplasma species.
Collapse
Affiliation(s)
- Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yutong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yanzhao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
9
|
Zhao G, Lu D, Li M, Wang Y. Gene editing tools for mycoplasmas: references and future directions for efficient genome manipulation. Front Microbiol 2023; 14:1191812. [PMID: 37275127 PMCID: PMC10232828 DOI: 10.3389/fmicb.2023.1191812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mycoplasmas are successful pathogens that cause debilitating diseases in humans and various animal hosts. Despite the exceptionally streamlined genomes, mycoplasmas have evolved specific mechanisms to access essential nutrients from host cells. The paucity of genetic tools to manipulate mycoplasma genomes has impeded studies of the virulence factors of pathogenic species and mechanisms to access nutrients. This review summarizes several strategies for editing of mycoplasma genomes, including homologous recombination, transposons, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and synthetic biology. In addition, the mechanisms and features of different tools are discussed to provide references and future directions for efficient manipulation of mycoplasma genomes.
Collapse
Affiliation(s)
- Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
10
|
Chen X, Ishfaq M, Wang J. Baicalin ameliorates Mycoplasma gallisepticum-induced inflammatory injury via inhibiting STIM1-regulated ceramide accumulation in DF-1 cells. Poult Sci 2023; 102:102687. [PMID: 37099879 PMCID: PMC10149409 DOI: 10.1016/j.psj.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is dependent on its host for many nutrients due to the loss of many important metabolic pathways. Ceramide is a sphingolipid that regulates multiple cellular processes in eukaryotic cell. Several studies highlighted the crucial role of ceramide on the pathogenesis of various pathogens. This study aimed to determine whether ceramide plays a crucial role in the pathogenesis of MG. Based on an MG infection model in DF-1 cells, the results revealed that MG infection induced ceramide accumulation in DF-1 cells. Inhibiting the de novo synthesis of ceramide significantly inhibited MG proliferation and inflammatory injury caused by MG in DF-1 cells. Meanwhile, MG infection led to endoplasmic reticulum stress, and pharmacologic inhibition of endoplasmic reticulum stress prevented ceramide accumulation and MG proliferation in DF-1 cells, alleviating the inflammatory injury caused by MG. In addition, MG infection significantly promoted expression level of stromal interaction molecule 1 (STIM1), thus induced calcium overload and oxidative stress. Furthermore, inhibition of STIM1 expression partially restored calcium homeostasis and mitigated oxidative stress, thus alleviated endoplasmic reticulum stress. Importantly, the inflammatory injury caused by MG were partially ameliorated by baicalin treatment (20 µg/mL) through downregulating STIM1 expression. In summary, these results suggests that ceramide accumulation through the de novo pathway plays an important role to promote MG proliferation and baicalin can alleviate MG infection induced inflammatory injury via regulating STIM1-related oxidative stress, endoplasmic reticulum stress and ceramide accumulation in DF-1 cells.
Collapse
|
11
|
Dawood A, Algharib SA, Zhao G, Zhu T, Qi M, Delai K, Hao Z, Marawan MA, Shirani I, Guo A. Mycoplasmas as Host Pantropic and Specific Pathogens: Clinical Implications, Gene Transfer, Virulence Factors, and Future Perspectives. Front Cell Infect Microbiol 2022; 12:855731. [PMID: 35646746 PMCID: PMC9137434 DOI: 10.3389/fcimb.2022.855731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Mycoplasmas as economically important and pantropic pathogens can cause similar clinical diseases in different hosts by eluding host defense and establishing their niches despite their limited metabolic capacities. Besides, enormous undiscovered virulence has a fundamental role in the pathogenesis of pathogenic mycoplasmas. On the other hand, they are host-specific pathogens with some highly pathogenic members that can colonize a vast number of habitats. Reshuffling mycoplasmas genetic information and evolving rapidly is a way to avoid their host's immune system. However, currently, only a few control measures exist against some mycoplasmosis which are far from satisfaction. This review aimed to provide an updated insight into the state of mycoplasmas as pathogens by summarizing and analyzing the comprehensive progress, current challenge, and future perspectives of mycoplasmas. It covers clinical implications of mycoplasmas in humans and domestic and wild animals, virulence-related factors, the process of gene transfer and its crucial prospects, the current application and future perspectives of nanotechnology for diagnosing and curing mycoplasmosis, Mycoplasma vaccination, and protective immunity. Several questions remain unanswered and are recommended to pay close attention to. The findings would be helpful to develop new strategies for basic and applied research on mycoplasmas and facilitate the control of mycoplasmosis for humans and various species of animals.
Collapse
Affiliation(s)
- Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Hubei Hongshan Laboratory, Wuhan, China
| | - Samah Attia Algharib
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, HZAU, Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Mingpu Qi
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Kong Delai
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhiyu Hao
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| | - Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Infectious Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad, Afghanistan
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Zhang Y, Xu Z, Luo H, Hao X, Li M. 细菌c-di-AMP特异性磷酸二酯酶的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Cutruzzolà F, Paiardini A, Scribani Rossi C, Spizzichino S, Paone A, Giardina G, Rinaldo S. A conserved scaffold with heterogeneous metal ion binding site: the multifaceted example of HD-GYP proteins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Lu D, Zhang H, Zhang Y, Zhao G, Anwar Khan F, Chen Y, Hu C, Yang L, Chen H, Guo A. Secreted MbovP0145 Promotes IL-8 Expression through Its Interactive β-Actin and MAPK Activation and Contributes to Neutrophil Migration. Pathogens 2021; 10:pathogens10121628. [PMID: 34959583 PMCID: PMC8707762 DOI: 10.3390/pathogens10121628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is an important pathogen of cattle responsible for huge economic losses in the dairy and beef industries worldwide. The proteins secreted by M. bovis are mainly related to its adhesion, invasion, virulence, and intracellular survival and play a role in mycoplasma-host interactions. In our previous study, we found MbovP0145, a secreted protein present in the M. bovis secretome, but little is known about its function. In this study, we assessed the inflammatory characteristics and underlined mechanism of this inflammation of recombinant MbovP0145 (rMbovP0145). For this, bovine lung epithelial cells (EBL) were stimulated by rMbovP0145 to see the IL-8 production in a time- and dose-dependent manner. We observed that rMbovP0145 increased the production of IL-8 via ERK1/2 and P38 pathway activation. Further, the effect of the M. bovis ΔMbov_0145 mutant and its complementary strain on IL-8 mRNA expression was also confirmed. A pulldown assay of the GST-tagged MbovP0145 protein with mass spectrometry demonstrated that β-actin could specifically interact with rMbovP0145 to mediate the IL-8 signaling. As knockdown of β-actin expression with RNA interference in EBL cells decreased the mRNA expression of IL-8 and the phosphorylated ERK1/2 and P38 proteins, whereas disrupted actin polymerization by cytochalasin D led to a significantly higher IL-8 expression and MAPK phosphorylation in rMbovP0145-stimulated cells. Compared to M. bovis HB0801 and its complementary strain, the culture supernatant of EBL cells infected with the M. bovis ΔMbov_0145 mutant induced less neutrophil migration to the lower chamber in a transwell system. In conclusion, MbovP0145 promoted IL-8 expression by interacting with β-actin through activation of the MAPK pathway, thus contributing to neutrophil migration.
Collapse
Affiliation(s)
- Doukun Lu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqiu Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Farhan Anwar Khan
- Department of Animal Health, The University of Agriculture, Peshawar 25120, Pakistan;
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (D.L.); (H.Z.); (Y.Z.); (G.Z.); (Y.C.); (C.H.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87287115
| |
Collapse
|
15
|
Liu Y, Deng Z, Xu S, Liu G, Lin Y, Khan S, Gao J, Qu W, Kastelic JP, Han B. Mycoplasma bovis subverts autophagy to promote intracellular replication in bovine mammary epithelial cells cultured in vitro. Vet Res 2021; 52:130. [PMID: 34649594 PMCID: PMC8515657 DOI: 10.1186/s13567-021-01002-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
Mycoplasma species are the smallest prokaryotes capable of self-replication. To investigate Mycoplasma induced autophagy in mammalian cells, Mycoplasma bovis (M. bovis) and bovine mammary epithelial cells (bMEC) were used in an in vitro infection model. Initially, intracellular M. bovis was enclosed within a membrane-like structure in bMEC, as viewed with transmission electron microscopy. In infected bMEC, increased LC3II was verified by Western blotting, RT-PCR and laser confocal microscopy, confirming autophagy at 1, 3 and 6 h post-infection (hpi), with a peak at 6 hpi. However, the M. bovis-induced autophagy flux was subsequently blocked. P62 degradation in infected bMEC was inhibited at 3, 6, 12 and 24 hpi, based on Western blotting and RT-PCR. Beclin1 expression decreased at 12 and 24 hpi. Furthermore, autophagosome maturation was subverted by M. bovis. Autophagosome acidification was inhibited by M. bovis infection, based on detection of mCherry-GFP-LC3 labeled autophagosomes; the decreases in protein levels of Lamp-2a indicate that the lysosomes were impaired by infection. In contrast, activation of autophagy (with rapamycin or HBSS) overcame the M. bovis-induced blockade in phagosome maturation by increasing delivery of M. bovis to the lysosome, with a concurrent decrease in intracellular M. bovis replication. In conclusion, although M. bovis infection induced autophagy in bMEC, the autophagy flux was subsequently impaired by inhibiting autophagosome maturation. Therefore, we conclude that M. bovis subverted autophagy to promote its intracellular replication in bMEC. These findings are the impetus for future studies to further characterize interactions between M. bovis and mammalian host cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhaoju Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yushan Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sohrab Khan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Zhao G, Zhu X, Zhang H, Chen Y, Schieck E, Hu C, Chen H, Guo A. Novel Secreted Protein of Mycoplasma bovis MbovP280 Induces Macrophage Apoptosis Through CRYAB. Front Immunol 2021; 12:619362. [PMID: 33659004 PMCID: PMC7917047 DOI: 10.3389/fimmu.2021.619362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma bovis causes important diseases and great losses on feedlots and dairy farms. However, there are only a few measures to control M. bovis-related diseases. As in other mycoplasma species, this is predominantly because the virulence related factors of this pathogen are largely unknown. Therefore, in this study, we aimed to identify novel virulence-related factors among the secreted proteins of M. bovis. Using bioinformatic tools to analyze its secreted proteins, we preliminarily predicted 39 secreted lipoproteins, and then selected 11 of them for confirmation based on SignalP scores >0.6 or SceP scores >0.8 and conserved domains. These 11 genes were cloned after gene modification based on the codon bias of Escherichia coli and expressed. Mouse antiserum to each recombinant protein was developed. A western blotting assay with these antisera confirmed that MbovP280 and MbovP475 are strongly expressed and secreted proteins, but only MbovP280 significantly reduced the viability of bovine macrophages (BoMac). In further experiments, MbovP280 induced the apoptosis of BoMac treated with both live M. bovis and MbovP280 protein. The conserved coiled-coil domain of MbovP280 at amino acids 210–269 is essential for its induction of apoptosis. Further, immunoprecipitation, mass spectrometry, and coimmunoprecipitation assays identified the anti-apoptosis regulator αB-crystallin (CRYAB) as an MbovP280-binding ligand. An αβ-crystallin knockout cell line BoMac-cryab−, Mbov0280-knockout M. bovis strain T9.297, and its complemented M. bovis strain CT9.297 were constructed and the apoptosis of BoMac-cryab− induced by these strains was compared. The results confirmed that CRYAB is critical for MbovP280 function as an apoptosis inducer in BoMac. In conclusion, in this study, we identified MbovP280 as a novel secreted protein of M. bovis that induces the apoptosis of BoMac via its coiled-coil domain and cellular ligand CRYAB. These findings extend our understanding of the virulence mechanism of mycoplasmal species.
Collapse
Affiliation(s)
- Gang Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xifang Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Ruminant Bio-Products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Zhang C, Zheng W, Cheng M, Omenn GS, Freddolino PL, Zhang Y. Functions of Essential Genes and a Scale-Free Protein Interaction Network Revealed by Structure-Based Function and Interaction Prediction for a Minimal Genome. J Proteome Res 2021; 20:1178-1189. [PMID: 33393786 PMCID: PMC7867644 DOI: 10.1021/acs.jproteome.0c00359] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When the JCVI-syn3.0 genome was designed and implemented in 2016 as the minimal genome of a free-living organism, approximately one-third of the 438 protein-coding genes had no known function. Subsequent refinement into JCVI-syn3A led to inclusion of 16 additional protein-coding genes, including several unknown functions, resulting in an improved growth phenotype. Here, we seek to unveil the biological roles and protein-protein interaction (PPI) networks for these poorly characterized proteins using state-of-the-art deep learning contact-assisted structure prediction, followed by structure-based annotation of functions and PPI predictions. Our pipeline is able to confidently assign functions for many previously unannotated proteins such as putative vitamin transporters, which suggest the importance of nutrient uptake even in a minimized genome. Remarkably, despite the artificial selection of genes in the minimal syn3 genome, our reconstructed PPI network still shows a power law distribution of node degrees typical of naturally evolved bacterial PPI networks. Making use of our framework for combined structure/function/interaction modeling, we are able to identify both fundamental aspects of network biology that are retained in a minimal proteome and additional essential functions not yet recognized among the poorly annotated components of the syn3.0 and syn3A proteomes.
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Micah Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|