1
|
López-Luis MA, Soriano-Pérez EE, Parada-Fabián JC, Torres J, Maldonado-Rodríguez R, Méndez-Tenorio A. A Proposal for a Consolidated Structural Model of the CagY Protein of Helicobacter pylori. Int J Mol Sci 2023; 24:16781. [PMID: 38069104 PMCID: PMC10706595 DOI: 10.3390/ijms242316781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
CagY is the largest and most complex protein from Helicobacter pylori's (Hp) type IV secretion system (T4SS), playing a critical role in the modulation of gastric inflammation and risk for gastric cancer. CagY spans from the inner to the outer membrane, forming a channel through which Hp molecules are injected into human gastric cells. Yet, a tridimensional structure has been reported for only short segments of the protein. This intricate protein was modeled using different approaches, including homology modeling, ab initio, and deep learning techniques. The challengingly long middle repeat region (MRR) was modeled using deep learning and optimized using equilibrium molecular dynamics. The previously modeled segments were assembled into a 1595 aa chain and a 14-chain CagY multimer structure was assembled by structural alignment. The final structure correlated with published structures and allowed to show how the multimer may form the T4SS channel through which CagA and other molecules are translocated to gastric cells. The model confirmed that MRR, the most polymorphic and complex region of CagY, presents numerous cysteine residues forming disulfide bonds that stabilize the protein and suggest this domain may function as a contractile region playing an essential role in the modulating activity of CagY on tissue inflammation.
Collapse
Affiliation(s)
- Mario Angel López-Luis
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Eva Elda Soriano-Pérez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - José Carlos Parada-Fabián
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Rogelio Maldonado-Rodríguez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| |
Collapse
|
2
|
Gómez-Garzón C, Payne SM. Divide and conquer: genetics, mechanism, and evolution of the ferrous iron transporter Feo in Helicobacter pylori. Front Microbiol 2023; 14:1219359. [PMID: 37469426 PMCID: PMC10353542 DOI: 10.3389/fmicb.2023.1219359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Feo is the most widespread and conserved system for ferrous iron uptake in bacteria, and it is important for virulence in several gastrointestinal pathogens. However, its mechanism remains poorly understood. Hitherto, most studies regarding the Feo system were focused on Gammaproteobacterial models, which possess three feo genes (feoA, B, and C) clustered in an operon. We found that the human pathogen Helicobacter pylori possesses a unique arrangement of the feo genes, in which only feoA and feoB are present and encoded in distant loci. In this study, we examined the functional significance of this arrangement. Methods Requirement and regulation of the individual H. pylori feo genes were assessed through in vivo assays and gene expression profiling. The evolutionary history of feo was inferred via phylogenetic reconstruction, and AlphaFold was used for predicting the FeoA-FeoB interaction. Results and Discussion Both feoA and feoB are required for Feo function, and feoB is likely subjected to tight regulation in response to iron and nickel by Fur and NikR, respectively. Also, we established that feoA is encoded in an operon that emerged in the common ancestor of most, but not all, helicobacters, and this resulted in feoA transcription being controlled by two independent promoters. The H. pylori Feo system offers a new model to understand ferrous iron transport in bacterial pathogens.
Collapse
Affiliation(s)
- Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Malfertheiner P, Camargo MC, El-Omar E, Liou JM, Peek R, Schulz C, Smith SI, Suerbaum S. Helicobacter pylori infection. Nat Rev Dis Primers 2023; 9:19. [PMID: 37081005 PMCID: PMC11558793 DOI: 10.1038/s41572-023-00431-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Helicobacter pylori infection causes chronic gastritis, which can progress to severe gastroduodenal pathologies, including peptic ulcer, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori is usually transmitted in childhood and persists for life if untreated. The infection affects around half of the population in the world but prevalence varies according to location and sanitation standards. H. pylori has unique properties to colonize gastric epithelium in an acidic environment. The pathophysiology of H. pylori infection is dependent on complex bacterial virulence mechanisms and their interaction with the host immune system and environmental factors, resulting in distinct gastritis phenotypes that determine possible progression to different gastroduodenal pathologies. The causative role of H. pylori infection in gastric cancer development presents the opportunity for preventive screen-and-treat strategies. Invasive, endoscopy-based and non-invasive methods, including breath, stool and serological tests, are used in the diagnosis of H. pylori infection. Their use depends on the specific individual patient history and local availability. H. pylori treatment consists of a strong acid suppressant in various combinations with antibiotics and/or bismuth. The dramatic increase in resistance to key antibiotics used in H. pylori eradication demands antibiotic susceptibility testing, surveillance of resistance and antibiotic stewardship.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
- Medical Department Klinik of Gastroenterology, Hepatology and Infectiology, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Cancer Center, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Schulz
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
| | - Stella I Smith
- Department of Molecular Biology and Biotechnology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Sebastian Suerbaum
- DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- National Reference Center for Helicobacter pylori, Munich, Germany
| |
Collapse
|
4
|
O’Brien VP, Jackson LK, Frick JP, Rodriguez Martinez AE, Jones DS, Johnston CD, Salama NR. Helicobacter pylori Chronic Infection Selects for Effective Colonizers of Metaplastic Glands. mBio 2023; 14:e0311622. [PMID: 36598261 PMCID: PMC9973278 DOI: 10.1128/mbio.03116-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Chronic gastric infection with Helicobacter pylori can lead to progressive tissue changes that culminate in cancer, but how H. pylori adapts to the changing tissue environment during disease development is not fully understood. In a transgenic mouse gastric metaplasia model, we found that strains from unrelated individuals differed in their ability to infect the stomach, to colonize metaplastic glands, and to alter the expression of the metaplasia-associated protein TFF3. H. pylori isolates from different stages of disease from a single individual had differential ability to colonize healthy and metaplastic gastric glands. Exposure to the metaplastic environment selected for high gastric colonization by one of these strains. Complete genome sequencing revealed a unique alteration in the frequency of a variant allele of the putative adhesin sabB, arising from a recombination event with the related sialic acid binding adhesin (SabA) gene. Mutation of sabB in multiple H. pylori strain backgrounds strongly reduced adherence to both normal and metaplastic gastric tissue, and highly attenuated stomach colonization in mice. Thus, the changing gastric environment during disease development promotes bacterial adhesin gene variation associated with enhanced gastric colonization. IMPORTANCE Chronic infection with Helicobacter pylori is the primary risk factor for developing stomach cancer. As disease progresses H. pylori must adapt to a changing host tissue environment that includes induction of new cell fates in the cells that line the stomach. We tested representative H. pylori isolates collected from the same patient during early and later stages of disease in a mouse model where we can rapidly induce disease-associated tissue changes. Only the later-stage H. pylori strains could robustly colonize the diseased stomach environment. We also found that the ability to colonize the diseased stomach was associated with genetic variation in a putative cell surface adhesin gene called sabB. Additional experiments revealed that SabB promotes binding to stomach tissue and is critical for stomach colonization by the late-stage strains. Thus, H. pylori diversifies its genome during disease progression and these genomic changes highlight critical factors for bacterial persistence.
Collapse
Affiliation(s)
- V. P. O’Brien
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - L. K. Jackson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - J. P. Frick
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - D. S. Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - C. D. Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - N. R. Salama
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis. J Clin Microbiol 2023; 61:e0080222. [PMID: 36515506 PMCID: PMC9879099 DOI: 10.1128/jcm.00802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.
Collapse
|
6
|
Mitochondria supply sub-lethal signals for cytokine secretion and DNA-damage in H. pylori infection. Cell Death Differ 2022; 29:2218-2232. [PMID: 35505004 PMCID: PMC9613881 DOI: 10.1038/s41418-022-01009-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.
Collapse
|
7
|
The Helicobacter pylori UvrC Nuclease Is Essential for Chromosomal Microimports after Natural Transformation. mBio 2022; 13:e0181122. [PMID: 35876509 PMCID: PMC9426483 DOI: 10.1128/mbio.01811-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial carcinogenic pathogen that infects the stomachs of half of the human population. It is a natural mutator due to a deficient DNA mismatch repair pathway and is naturally competent for transformation. As a result, it is one of the most genetically diverse human bacterial pathogens. The length of chromosomal imports in H. pylori follows an unusual bimodal distribution consisting of macroimports with a mean length of 1,645 bp and microimports with a mean length of 28 bp. The mechanisms responsible for this import pattern were unknown. Here, we used a high-throughput whole-genome transformation assay to elucidate the role of nucleotide excision repair pathway (NER) components on import length distribution. The data show that the integration of microimports depended on the activity of the UvrC endonuclease, while none of the other components of the NER pathway was required. Using H. pylori site-directed mutants, we showed that the widely conserved UvrC nuclease active sites, while essential for protection from UV light, one of the canonical NER functions, are not required for generation of microimports. A quantitative analysis of recombination patterns based on over 1,000 imports from over 200 sequenced recombinant genomes showed that microimports occur frequently within clusters of multiple imports, strongly suggesting they derive from a single strand invasion event. We propose a hypothetical model of homologous recombination in H. pylori, involving a novel function of UvrC, that reconciles the available experimental data about recombination patterns in H. pylori. IMPORTANCE Helicobacter pylori is one of the most common and genetically diverse human bacterial pathogens. It is responsible for chronic gastritis and represents the main risk factor for gastric cancer. In H. pylori, DNA fragments can be imported by recombination during natural transformation. The length of those fragments determines how many potentially beneficial or deleterious alleles are acquired and thus influences adaptation to the gastric niche. Here, we used a transformation assay to examine imported fragments across the chromosome. We show that UvrC, an endonuclease involved in DNA repair, is responsible for the specific integration of short DNA fragments. This suggests that short and long fragments are imported through distinct recombination pathways. We also show that short fragments are frequently clustered with longer fragments, suggesting that both pathways may be mechanistically linked. These findings provide a novel basis to explain how H. pylori can fine-tune the genetic diversity acquired by transformation.
Collapse
|