1
|
Dorantes-Palma D, Pérez-Mora S, Azuara-Liceaga E, Pérez-Rueda E, Pérez-Ishiwara DG, Coca-González M, Medel-Flores MO, Gómez-García C. Screening and Structural Characterization of Heat Shock Response Elements (HSEs) in Entamoeba histolytica Promoters. Int J Mol Sci 2024; 25:1319. [PMID: 38279319 PMCID: PMC10815948 DOI: 10.3390/ijms25021319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Entamoeba histolytica (E. histolytica) exhibits a remarkable capacity to respond to thermal shock stress through a sophisticated genetic regulation mechanism. This process is carried out via Heat Shock Response Elements (HSEs), which are recognized by Heat Shock Transcription Factors (EhHSTFs), enabling fine and precise control of gene expression. Our study focused on screening for HSEs in the promoters of the E. histolytica genome, specifically analyzing six HSEs, including Ehpgp5, EhrabB1, EhrabB4, EhrabB5, Ehmlbp, and Ehhsp100. We discovered 2578 HSEs, with 1412 in promoters of hypothetical genes and 1166 in coding genes. We observed that a single promoter could contain anywhere from one to five HSEs. Gene ontology analysis revealed the presence of HSEs in essential genes for the amoeba, including cysteine proteinases, ribosomal genes, Myb family DNA-binding proteins, and Rab GTPases, among others. Complementarily, our molecular docking analyses indicate that these HSEs are potentially recognized by EhHSTF5, EhHSTF6, and EhHSTF7 factors in their trimeric conformation. These findings suggest that E. histolytica has the capability to regulate a wide range of critical genes via HSE-EhHSTFs, not only for thermal stress response but also for vital functions of the parasite. This is the first comprehensive study of HSEs in the genome of E. histolytica, significantly contributing to the understanding of its genetic regulation and highlighting the complexity and precision of this mechanism in the parasite's survival.
Collapse
Affiliation(s)
- David Dorantes-Palma
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Salvador Pérez-Mora
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Ernesto Pérez-Rueda
- Unidad Académica del Estado de Yucatán, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 97302, Mexico;
| | - David Guillermo Pérez-Ishiwara
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Misael Coca-González
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - María Olivia Medel-Flores
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| | - Consuelo Gómez-García
- Laboratorio de Biomedicina Molecular 1, ENMyH, Instituto Politécnico Nacional, Mexico City 07320, Mexico; (D.D.-P.); (S.P.-M.); (D.G.P.-I.); (M.C.-G.); (M.O.M.-F.)
| |
Collapse
|
2
|
Mendoza Cavazos C, Heredia MY, Owens LA, Knoll LJ. Using Entamoeba muris To Model Fecal-Oral Transmission of Entamoeba in Mice. mBio 2023; 14:e0300822. [PMID: 36744962 PMCID: PMC9973306 DOI: 10.1128/mbio.03008-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
There are several Entamoeba species that colonize humans, but only Entamoeba histolytica causes severe disease. E. histolytica is transmitted through the fecal-oral route to colonize the intestinal tract of 50 million people worldwide. The current mouse model to study E. histolytica intestinal infection directly delivers the parasite into the surgically exposed cecum, which circumvents the natural route of infection. To develop a fecal-oral mouse model, we screened our vivarium for a natural murine Entamoeba colonizer via a pan-Entamoeba PCR targeting the 18S ribosomal gene. We determined that C57BL/6 mice were chronically colonized by Entamoeba muris. This amoeba is closely related to E. histolytica, as determined by 18S sequencing and cross-reactivity with an E. histolytica-specific antibody. In contrast, outbred Swiss Webster (SW) mice were not chronically colonized by E. muris. We orally challenged SW mice with 1 × 105 E. muris cysts and discovered they were susceptible to infection, with peak cyst shedding occurring between 5 and 7 days postinfection. Most infected SW mice did not lose weight significantly but trended toward decreased weight gain throughout the experiment compared to mock-infected controls. Infected mice treated with paromomycin, an antibiotic used against noninvasive intestinal disease, do not become colonized by E. muris. Within the intestinal tract, E. muris localizes exclusively to the cecum and colon. Purified E. muris cysts treated with bovine bile in vitro excyst into mobile, pretrophozoite stages. Overall, this work describes a novel fecal-oral mouse model for the important global pathogen E. histolytica. IMPORTANCE Infection with parasites from the Entamoeba genus are significantly underreported causes of diarrheal disease that disproportionally impact tropical regions. There are several species of Entamoeba that infect humans to cause a range of symptoms from asymptomatic colonization of the intestinal tract to invasive disease with dissemination. All Entamoeba species are spread via the fecal-oral route in contaminated food and water. Studying the life cycle of Entamoeba, from host colonization to infectious fecal cyst production, can provide targets for vaccine and drug development. Because there is not an oral challenge rodent model, we screened for a mouse Entamoeba species and identified Entamoeba muris as a natural colonizer. We determine the peak of infection after an oral challenge, the efficacy of paromomycin treatment, the intestinal tract localization, and the cues that trigger excystation. This oral infection mouse model will be valuable for the development of novel therapeutic options for Entamoeba infections.
Collapse
Affiliation(s)
- Carolina Mendoza Cavazos
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marienela Y. Heredia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Leah A. Owens
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Roro GB, Eriso F, Al-Hazimi AM, Kuddus M, Singh SC, Upadhye V, Hajare ST. Prevalence and associated risk factors of Entamoeba histolytica infection among school children from three primary schools in Arsi Town, West Zone, Ethiopia. J Parasit Dis 2022; 46:776-784. [PMID: 36091282 PMCID: PMC9458809 DOI: 10.1007/s12639-022-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022] Open
Abstract
Entamoeba histolytica is one of the major pathogenic intestinal parasites and is amongst the leading causes of diarrheal illness in children. Around 500 million people are infected worldwide, while 75,000 die of the disease annually. E. histolytica is associated with moderate to severe diarrhoea and increased mortality among children in African countries and negatively affects child growth and development. Malnutrition is also an important contributor to the prevalence of E. histolytica in Ethiopia. It is mostly associated with poor hygiene, poverty, illiteracy, lack of access to potable water, and a hot, humid tropical climate. Thus, the present investigation was aimed to assess the prevalence rate and associated factors of E. histolytica among schoolchildren in Arsi Town, West Zone, Oromia Regional State, Ethiopia. A cross-sectional study was conducted from February 1st to May 1st, 2020. A total number of 334 students were selected from three governmental elementary schools in the west zone using a systematic sampling method. A structured questionnaire was adopted to identify environmental, socio-demographic, and behavioral factors. Microscopically positive samples for E. histolytica cysts were further characterised using an E. histolytica II antigen detection kit. The statistical analysis of the data was done using SPSS software. A univariate and multivariate logistic regression analysis was done. P value < 0.05 was considered statistically significant. The overall prevalence of E. histolytica was 19.8%. Hand washing habits before eating [AOR = 0.32; 95% CI (0.12, 0.84)], hand washing habits after defecation [AOR = 0.396; 95% CI (0.165, 0.946)], and ameba awareness [AOR = 0.35; 95% CI (0.142, 0.889)] were factors associated with parasite prevalence. The findings of this study could assist the government in targeting infected areas, improving sanitation to prevent E. histolytica transmission, and implementing effective control measures in these rural communities, particularly among youngsters, who represent the nation's future.
Collapse
Affiliation(s)
- Geribe Bushura Roro
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla, SNNPR Ethiopia
| | - Feleke Eriso
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla, SNNPR Ethiopia
| | - Awdah M. Al-Hazimi
- Faculty of Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | | | - Vijay Upadhye
- Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760 India
| | - Sunil Tulshiram Hajare
- Department of Biology, College of Natural and Computational Sciences, Dilla University, Dilla, SNNPR Ethiopia
| |
Collapse
|
4
|
Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathog 2021; 17:e1009912. [PMID: 34464427 PMCID: PMC8407538 DOI: 10.1371/journal.ppat.1009912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|