1
|
Kleinpeter A, Mallery DL, Renner N, Albecka A, Klarhof JO, Freed EO, James LC. HIV-1 adapts to lost IP6 coordination through second-site mutations that restore conical capsid assembly. Nat Commun 2024; 15:8017. [PMID: 39271696 PMCID: PMC11399258 DOI: 10.1038/s41467-024-51971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The HIV-1 capsid is composed of capsid (CA) protein hexamers and pentamers (capsomers) that contain a central pore hypothesised to regulate capsid assembly and facilitate nucleotide import early during post-infection. These pore functions are mediated by two positively charged rings created by CA Arg-18 (R18) and Lys-25 (K25). Here we describe the forced evolution of viruses containing mutations in R18 and K25. Whilst R18 mutants fail to replicate, K25A viruses acquire compensating mutations that restore nearly wild-type replication fitness. These compensating mutations, which rescue reverse transcription and infection without reintroducing lost pore charges, map to three adaptation hot-spots located within and between capsomers. The second-site suppressor mutations act by restoring the formation of pentamers lost upon K25 mutation, enabling closed conical capsid assembly both in vitro and inside virions. These results indicate that there is no intrinsic requirement for K25 in either nucleotide import or capsid assembly. We propose that whilst HIV-1 must maintain a precise hexamer:pentamer equilibrium for proper capsid assembly, compensatory mutations can tune this equilibrium to restore fitness lost by mutation of the central pore.
Collapse
Affiliation(s)
- Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - J Ole Klarhof
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
2
|
Biswas B, Lai KK, Bracey H, Datta SAK, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of inositol hexakisphosphate (IP6) in murine leukemia virus replication. mBio 2024; 15:e0115824. [PMID: 38912776 PMCID: PMC11253606 DOI: 10.1128/mbio.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Siddhartha A. K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| |
Collapse
|
3
|
Biswas B, Lai KK, Bracey H, Datta SA, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of Inositol hexakisphosphate (IP6) in Murine Leukemia Virus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581940. [PMID: 38464197 PMCID: PMC10925174 DOI: 10.1101/2024.02.27.581940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Siddhartha A.K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| |
Collapse
|
4
|
Faysal KMR, Walsh JC, Renner N, Márquez CL, Shah VB, Tuckwell AJ, Christie MP, Parker MW, Turville SG, Towers GJ, James LC, Jacques DA, Böcking T. Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure. eLife 2024; 13:e83605. [PMID: 38347802 PMCID: PMC10863983 DOI: 10.7554/elife.83605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Collapse
Affiliation(s)
- KM Rifat Faysal
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Nadine Renner
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Vaibhav B Shah
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Andrew J Tuckwell
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneMelbourneAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | | | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Leo C James
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, UNSWSydneyAustralia
| |
Collapse
|
5
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Sowd GA, Shi J, Fulmer A, Aiken C. HIV-1 capsid stability enables inositol phosphate-independent infection of target cells and promotes integration into genes. PLoS Pathog 2023; 19:e1011423. [PMID: 37267431 PMCID: PMC10266667 DOI: 10.1371/journal.ppat.1011423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/14/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
The mature HIV-1 capsid is stabilized by host and viral determinants. The capsid protein CA binds to the cellular metabolites inositol hexakisphosphate (IP6) and its precursor inositol (1, 3, 4, 5, 6) pentakisphosphate (IP5) to stabilize the mature capsid. In target cells, capsid destabilization by the antiviral compounds lenacapavir and PF74 reveals a HIV-1 infectivity defect due to IP5/IP6 (IP5/6) depletion. To test whether intrinsic HIV-1 capsid stability and/or host factor binding determines HIV-1 insensitivity to IP5/6 depletion, a panel of CA mutants was assayed for infection of IP5/6-depleted T cells and wildtype cells. Four CA mutants with unstable capsids exhibited dependence on host IP5/6 for infection and reverse transcription (RTN). Adaptation of one such mutant, Q219A, by spread in culture resulted in Vpu truncation and a capsid three-fold interface mutation, T200I. T200I increased intrinsic capsid stability as determined by in vitro uncoating of purified cores and partially reversed the IP5/6-dependence in target cells for each of the four CA mutants. T200I further rescued the changes to lenacapavir sensitivity associated with the parental mutation. The premature dissolution of the capsid caused by the IP5/6-dependent mutations imparted a unique defect in integration targeting that was rescued by T200I. Collectively, these results demonstrate that T200I restored other capsid functions after RTN for the panel of mutants. Thus, the hyperstable T200I mutation stabilized the instability defects imparted by the parental IP5/6-dependent CA mutation. The contribution of Vpu truncation to mutant adaptation was linked to BST-2 antagonization, suggesting that cell-to-cell transfer promoted replication of the mutants. We conclude that interactions at the three-fold interface are adaptable, key mediators of capsid stability in target cells and are able to antagonize even severe capsid instability to promote infection.
Collapse
Affiliation(s)
- Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ashley Fulmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
7
|
Kleinpeter AB, Zhu Y, Mallery DL, Ablan SD, Chen L, Hardenbrook N, Saiardi A, James LC, Zhang P, Freed EO. The Effect of Inositol Hexakisphosphate on HIV-1 Particle Production and Infectivity can be Modulated by Mutations that Affect the Stability of the Immature Gag Lattice. J Mol Biol 2023; 435:168037. [PMID: 37330292 PMCID: PMC10544863 DOI: 10.1016/j.jmb.2023.168037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.
Collapse
Affiliation(s)
- Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA. https://twitter.com/AlexKleinpeter
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Long Chen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK. https://twitter.com/SaiardiLab
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. https://twitter.com/JamesLab9
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
8
|
Renner N, Kleinpeter A, Mallery DL, Albecka A, Rifat Faysal KM, Böcking T, Saiardi A, Freed EO, James LC. HIV-1 is dependent on its immature lattice to recruit IP6 for mature capsid assembly. Nat Struct Mol Biol 2023; 30:370-382. [PMID: 36624347 PMCID: PMC7614341 DOI: 10.1038/s41594-022-00887-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
9
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
10
|
Song Q, Yang Y, Jiang D, Qin Z, Xu C, Wang H, Huang J, Chen L, Luo R, Zhang X, Huang Y, Xu L, Yu Z, Tan S, Deng M, Xue R, Qie J, Li K, Yin Y, Yue X, Sun X, Su J, He F, Ding C, Hou Y. Proteomic analysis reveals key differences between squamous cell carcinomas and adenocarcinomas across multiple tissues. Nat Commun 2022; 13:4167. [PMID: 35851595 PMCID: PMC9293992 DOI: 10.1038/s41467-022-31719-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (AC) are two main histological subtypes of solid cancer; however, SCCs are derived from different organs with similar morphologies, and it is challenging to distinguish the origin of metastatic SCCs. Here we report a deep proteomic analysis of 333 SCCs of 17 organs and 69 ACs of 7 organs. Proteomic comparison between SCCs and ACs identifies distinguishable pivotal pathways and molecules in those pathways play consistent adverse or opposite prognostic roles in ACs and SCCs. A comparison between common and rare SCCs highlights lipid metabolism may reinforce the malignancy of rare SCCs. Proteomic clusters reveal anatomical features, and kinase-transcription factor networks indicate differential SCC characteristics, while immune subtyping reveals diverse tumor microenvironments across and within diagnoses and identified potential druggable targets. Furthermore, tumor-specific proteins provide candidates with differentially diagnostic values. This proteomics architecture represents a public resource for researchers seeking a better understanding of SCCs and ACs.
Collapse
Affiliation(s)
- Qi Song
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yufeng Huang
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Subei Tan
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Minying Deng
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ruqun Xue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingbo Qie
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kai Li
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanan Yin
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuetong Yue
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaogang Sun
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Chen Ding
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- State Key Laboratory Cell Differentiation and Regulation, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Ricaña CL, Dick RA. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Viruses 2021; 13:v13122516. [PMID: 34960784 PMCID: PMC8703376 DOI: 10.3390/v13122516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.
Collapse
|
12
|
HIV-1 CA Inhibitors Are Antagonized by Inositol Phosphate Stabilization of the Viral Capsid in Cells. J Virol 2021; 95:e0144521. [PMID: 34613803 PMCID: PMC8610598 DOI: 10.1128/jvi.01445-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.
Collapse
|
13
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
14
|
Aiken C, Rousso I. The HIV-1 capsid and reverse transcription. Retrovirology 2021; 18:29. [PMID: 34563203 PMCID: PMC8466977 DOI: 10.1186/s12977-021-00566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
The viral capsid plays a key role in HIV-1 reverse transcription. Recent studies have demonstrated that the small molecule IP6 dramatically enhances reverse transcription in vitro by stabilizing the viral capsid. Reverse transcription results in marked changes in the biophysical properties of the capsid, ultimately resulting in its breakage and disassembly. Here we review the research leading to these advances and describe hypotheses for capsid-dependent HIV-1 reverse transcription and a model for reverse transcription-primed HIV-1 uncoating.
Collapse
Affiliation(s)
- Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Itay Rousso
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
15
|
A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly. Viruses 2021; 13:v13091853. [PMID: 34578434 PMCID: PMC8473085 DOI: 10.3390/v13091853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.
Collapse
|
16
|
Poston D, Zang T, Bieniasz P. Derivation and characterization of an HIV-1 mutant that rescues IP 6 binding deficiency. Retrovirology 2021; 18:25. [PMID: 34454514 PMCID: PMC8403458 DOI: 10.1186/s12977-021-00571-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A critical step in the HIV-1 replication cycle is the assembly of Gag proteins to form virions at the plasma membrane. Virion assembly and maturation are facilitated by the cellular polyanion inositol hexaphosphate (IP6), which is proposed to stabilize both the immature Gag lattice and the mature capsid lattice by binding to rings of primary amines at the center of Gag or capsid protein (CA) hexamers. The amino acids comprising these rings are critical for proper virion formation and their substitution results in assembly deficits or impaired infectiousness. To better understand the nature of the deficits that accompany IP6 binding deficiency, we passaged HIV-1 mutants that had substitutions in IP6 coordinating residues to select for compensatory mutations. RESULTS We found a mutation, a threonine to isoleucine substitution at position 371 (T371I) in Gag, that restored replication competence to an IP6-binding-deficient HIV-1 mutant. Notably, unlike wild-type HIV-1, the assembly and infectiousness of resulting virus was not impaired when IP6 biosynthetic enzymes were genetically ablated. Surprisingly, we also found that the maturation inhibitor Bevirimat (BVM) could restore the assembly and replication of an IP6-binding deficient mutant. Moreover, using BVM-dependent mutants we were able to image BVM-induced assembly of individual HIV-1 particles assembly in living cells. CONCLUSIONS Overall these results suggest that IP6-Gag and Gag-Gag contacts are finely tuned to generate a Gag lattice of optimal stability, and that under certain conditions BVM can rescue IP6 deficiency. Additionally, our work identifies an inducible virion assembly system that can be utilized to visualize HIV-1 assembly events using live cell microscopy.
Collapse
Affiliation(s)
- Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
17
|
Transcriptome-level assessment of the impact of deformed wing virus on honey bee larvae. Sci Rep 2021; 11:15028. [PMID: 34294840 PMCID: PMC8298419 DOI: 10.1038/s41598-021-94641-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.
Collapse
|
18
|
Lee B, Park SJ, Hong S, Kim K, Kim S. Inositol Polyphosphate Multikinase Signaling: Multifaceted Functions in Health and Disease. Mol Cells 2021; 44:187-194. [PMID: 33935040 PMCID: PMC8112168 DOI: 10.14348/molcells.2021.0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol phosphates are water-soluble intracellular signaling molecules found in eukaryotes from yeasts to mammals, which are synthesized by a complex network of enzymes including inositol phosphate kinases. Among these, inositol polyphosphate multikinase (IPMK) is a promiscuous enzyme with broad substrate specificity, which phosphorylates multiple inositol phosphates, as well as phosphatidylinositol 4,5-bisphosphate. In addition to its catalytic actions, IPMK is known to non-catalytically control major signaling events via direct protein-protein interactions. In this review, we describe the general characteristics of IPMK, highlight its pleiotropic roles in various physiological and pathological conditions, and discuss future challenges in the field of IPMK signaling pathways.
Collapse
Affiliation(s)
- Boah Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
19
|
Correction: Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog 2021; 17:e1009389. [PMID: 33651846 PMCID: PMC7924751 DOI: 10.1371/journal.ppat.1009389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|