1
|
Zhang Y, Wu W, Bai Z, Zhang H, Liu H, Zhang L, Luo C, Chen M, Lu J, Gao W, Wang W, Liu C. Investigation on parasite infection and anthelmintic resistance of gastrointestinal nematodes in sheep in Hinggan league (City), China. BMC Vet Res 2024; 20:564. [PMID: 39696482 DOI: 10.1186/s12917-024-04420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Different areas of sheep infected with different types of parasites, all will cause serious harm to the local sheep, and the widespread use and repeated use of anthelmintics have produced different degrees of anthelmintic resistance (AR) in various regions. We re-investigated the infection of common parasites and AR of Gastrointestinal Nematodes (GINs) in sheep in Horqin Right Wing Front Banner, and first investigated the common parasite types and AR of GINs in sheep at other four areas in Hinggan league (city), China. RESULTS A total of 1770 fecal samples were collected from 1 prefecture-level city and 4 counties in Hinggan league, in which the infection rate of Coccidia ranged from 83.3% to 96.06%, that of Ascaris ovis ranged from 10.17% to 15.19%, that of Moniezia benedeni ranged from 0.6% to 1%, that of Moniezia expansa ranged from 0.33% to 8.15%. The infection rate of GINs was 100%, and Haemonchus contortus was still the dominant species. The AR results showed that only the closantel in Horqin Right Wing Middle Banner was low resiatant, and the other three regions had been resistant. Levamisole also occurred AR in the other four regions, the widely used ivermectin and albendazole had produced serious AR in five areas. The research shows that GINs are becoming more and more resistant to various anthelmintics, which has made the problem worse. CONCLUSIONS Understanding the dynamic changes of parasite infections and the development trend of AR in sheep in the region in this paper, the development trend seems to be more serious than imagined. Therefore only by deeply understanding the parasitic infections of sheep in this land can more reasonable medication guidance be carried out. It is expected to provide new ideas formore innovative, scientific and sustainable methods of preventing and controlling parasites.
Collapse
Affiliation(s)
- Yanmin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weijie Wu
- Hinggan League Agricultural and Animal Husbandry Technology Extension Centre, Hinggan, Inner Mongolia, China
| | - Zhiming Bai
- Horqin Right Front Banner Animal Disease Prevention and Control Center, Hinggan, Inner Mongolia, China
| | - Hao Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lili Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Chagan Luo
- Hinggan League Agricultural and Animal Husbandry Technology Extension Centre, Hinggan, Inner Mongolia, China
| | - Mulan Chen
- Hinggan League Agricultural and Animal Husbandry Technology Extension Centre, Hinggan, Inner Mongolia, China
| | - Jing Lu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Wa Gao
- Hetao College and Inner Mongolia Key Laboratory of Tick-Borne Infectious Diseases, Bayannur, Inner Mongolia, China
| | - Wenlong Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| | - Chunxia Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Shaver AO, Andersen EC. Integrating metabolomics into the diagnosis and investigation of anthelmintic resistance. Trends Parasitol 2024; 40:1097-1106. [PMID: 39572328 DOI: 10.1016/j.pt.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024]
Abstract
Anthelmintic resistance (AR) in parasitic nematodes poses a global health problem in livestock and domestic animals and is an emerging problem in humans. Consequently, we must understand the mechanisms of AR, including target-site resistance (TSR), in which mutations affect drug binding, and non-target site resistance (NTSR), which involves alterations in drug metabolism and detoxification processes. Because much of the focus has been on TSR, NTSR has received less attention. Here, we describe how metabolomics approaches using Caenorhabditis elegans offer the ability to disentangle nematode drug metabolism, identify metabolic changes associated with resistance, uncover novel biomarkers, and enhance diagnostic methods.
Collapse
Affiliation(s)
- Amanda O Shaver
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zhang Y, Guo W, Wen H, Shi Y, Gao W, Chen X, Wang T, Wang W, Wu W. Analysis of lncRNA-related studies of ivermectin-sensitive and -resistant strains of Haemonchus contortus. Parasitol Res 2024; 123:226. [PMID: 38814484 DOI: 10.1007/s00436-024-08238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.
Collapse
Affiliation(s)
- Yanmin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wenrui Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Haifeng Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Yaqin Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wa Gao
- Inner Mongolia Key Laboratory of Tick-Borne Infectious Diseases, Inner Mongolia, China
| | - Xindi Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Tengyu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wenlong Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China.
| | - Weijie Wu
- Hinggan League Agricultural and Animal Husbandry Technology Extension Centre, Ulanhot, China.
| |
Collapse
|
4
|
Shaver AO, Miller IR, Schaye ES, Moya ND, Collins JB, Wit J, Blanco AH, Shao FM, Andersen EJ, Khan SA, Paredes G, Andersen EC. Quantifying the fitness effects of resistance alleles with and without anthelmintic selection pressure using Caenorhabditis elegans. PLoS Pathog 2024; 20:e1012245. [PMID: 38768235 PMCID: PMC11142691 DOI: 10.1371/journal.ppat.1012245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Albendazole (a benzimidazole) and ivermectin (a macrocyclic lactone) are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channels (GluCls), but it is unknown whether GluCl genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of-function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required the loss of two GluCl genes (avr-14 and avr-15). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole conditions and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Isabella R. Miller
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Etta S. Schaye
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas D. Moya
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J. B. Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Alyssa H. Blanco
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Fiona M. Shao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Elliot J. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sharik A. Khan
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Gracie Paredes
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Wolstenholme AJ, Andersen EC, Choudhary S, Ebner F, Hartmann S, Holden-Dye L, Kashyap SS, Krücken J, Martin RJ, Midha A, Nejsum P, Neveu C, Robertson AP, von Samson-Himmelstjerna G, Walker R, Wang J, Whitehead BJ, Williams PDE. Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids. ADVANCES IN PARASITOLOGY 2024; 123:51-123. [PMID: 38448148 PMCID: PMC11143470 DOI: 10.1016/bs.apar.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Friederike Ebner
- Department of Molecular Life Sciences, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Susanne Hartmann
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ankur Midha
- Institute for Immunology, Freie Universität Berlin, Berlin, Germany
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Cedric Neveu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université de Tours, ISP, Nouzilly, France
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jianbin Wang
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | | | - Paul D E Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Shaver AO, Miller IR, Schaye ES, Moya ND, Collins J, Wit J, Blanco AH, Shao FM, Andersen EJ, Khan SA, Paredes G, Andersen EC. Quantifying the fitness effects of resistance alleles with and without anthelmintic selection pressure using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578300. [PMID: 38370666 PMCID: PMC10871296 DOI: 10.1101/2024.02.01.578300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Albendazole and ivermectin are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channel (GluCl) genes, but it is unknown whether these genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required loss of two GluCl genes (avr-14 and avr-15) or loss of three GluCl genes (avr-14, avr-15, and glc-1). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Isabella R. Miller
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Etta S. Schaye
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas D. Moya
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J.B. Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Alyssa H. Blanco
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Fiona M. Shao
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Elliot J. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sharik A. Khan
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Gracie Paredes
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Dept. of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Crombie TA, McKeown R, Moya ND, Evans K, Widmayer S, LaGrassa V, Roman N, Tursunova O, Zhang G, Gibson S, Buchanan C, Roberto N, Vieira R, Tanny R, Andersen E. CaeNDR, the Caenorhabditis Natural Diversity Resource. Nucleic Acids Res 2024; 52:D850-D858. [PMID: 37855690 PMCID: PMC10767927 DOI: 10.1093/nar/gkad887] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.
Collapse
Affiliation(s)
- Timothy A Crombie
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Cell, Molecular, Developmental biology, and Biophysics Graduate Program, ohns Hopkins University, Baltimore, MD, USA
| | - Kathryn S Evans
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Vincent LaGrassa
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Natalie Roman
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Orzu Tursunova
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sophia B Gibson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Claire M Buchanan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Nicole M Roberto
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rodolfo Vieira
- Northwestern University Information Technology, Media and Technology Innovation, Northwestern University, Evanston, IL USA
| | - Robyn E Tanny
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Bell AD, Chou HT, Valencia F, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNA interference in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2023; 13:jkad112. [PMID: 37221008 PMCID: PMC10411595 DOI: 10.1093/g3journal/jkad112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| | - Annalise B Paaby
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, EBB Building, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Zhang G, Andersen EC. Interplay Between Polymorphic Short Tandem Repeats and Gene Expression Variation in Caenorhabditis elegans. Mol Biol Evol 2023; 40:msad067. [PMID: 36999565 PMCID: PMC10075192 DOI: 10.1093/molbev/msad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023] Open
Abstract
Short tandem repeats (STRs) have orders of magnitude higher mutation rates than single nucleotide variants (SNVs) and have been proposed to accelerate evolution in many organisms. However, only few studies have addressed the impact of STR variation on phenotypic variation at both the organismal and molecular levels. Potential driving forces underlying the high mutation rates of STRs also remain largely unknown. Here, we leverage the recently generated expression and STR variation data among wild Caenorhabditis elegans strains to conduct a genome-wide analysis of how STRs affect gene expression variation. We identify thousands of expression STRs (eSTRs) showing regulatory effects and demonstrate that they explain missing heritability beyond SNV-based expression quantitative trait loci. We illustrate specific regulatory mechanisms such as how eSTRs affect splicing sites and alternative splicing efficiency. We also show that differential expression of antioxidant genes and oxidative stresses might affect STR mutations systematically using both wild strains and mutation accumulation lines. Overall, we reveal the interplay between STRs and gene expression variation by providing novel insights into regulatory mechanisms of STRs and highlighting that oxidative stress could lead to higher STR mutation rates.
Collapse
Affiliation(s)
- Gaotian Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
10
|
Villacis‐Perez E, Xue W, Vandenhole M, De Beer B, Dermauw W, Van Leeuwen T. Intraspecific diversity in the mechanisms underlying abamectin resistance in a cosmopolitan pest. Evol Appl 2023; 16:863-879. [PMID: 37124092 PMCID: PMC10130554 DOI: 10.1111/eva.13542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
Pesticide resistance relies on a myriad of mechanisms, ranging from single mutations to a complex and polygenic architecture, and it involves mechanisms such as target-site insensitivity, metabolic detoxification, or a combination of these, with either additive or synergistic effects. Several resistance mechanisms against abamectin, a macrocyclic lactone widely used in crop protection, have been reported in the cosmopolitan pest Tetranychus urticae. However, it has been shown that a single mechanism cannot account for the high levels of abamectin resistance found across different mite populations. Here, we used experimental evolution combined with bulked segregant analyses to map quantitative trait loci (QTL) associated with abamectin resistance in two genetically unrelated populations of T. urticae. In these two independent QTL mapping experiments, three and four QTLs were identified, of which three were shared between experiments. Shared QTLs contained genes encoding subunits of the glutamate-gated chloride channel (GluCl) and harboured previously reported mutations, including G314D in GluCl1 and G326E in GluCl3, but also novel resistance candidate loci, including DNA helicases and chemosensory receptors. Surprisingly, the fourth QTL, present only in only one of the experiments and thus unique for one resistant parental line, revealed a non-functional variant of GluCl2, suggesting gene knock-out as resistance mechanism. Our study uncovers the complex basis of abamectin resistance, and it highlights the intraspecific diversity of genetic mechanisms underlying resistance in a cosmopolitan pest.
Collapse
Affiliation(s)
- Ernesto Villacis‐Perez
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED)University of Amsterdam (UvA)AmsterdamThe Netherlands
| | - Wenxin Xue
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MerelbekeBelgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
11
|
Shaver AO, Wit J, Dilks CM, Crombie TA, Li H, Aroian RV, Andersen EC. Variation in anthelmintic responses are driven by genetic differences among diverse C. elegans wild strains. PLoS Pathog 2023; 19:e1011285. [PMID: 37011090 PMCID: PMC10101645 DOI: 10.1371/journal.ppat.1011285] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Treatment of parasitic nematode infections in humans and livestock relies on a limited arsenal of anthelmintic drugs that have historically reduced parasite burdens. However, anthelmintic resistance (AR) is increasing, and little is known about the molecular and genetic causes of resistance for most drugs. The free-living roundworm Caenorhabditis elegans has proven to be a tractable model to understand AR, where studies have led to the identification of molecular targets of all major anthelmintic drug classes. Here, we used genetically diverse C. elegans strains to perform dose-response analyses across 26 anthelmintic drugs that represent the three major anthelmintic drug classes (benzimidazoles, macrocyclic lactones, and nicotinic acetylcholine receptor agonists) in addition to seven other anthelmintic classes. First, we found that C. elegans strains displayed similar anthelmintic responses within drug classes and significant variation across drug classes. Next, we compared the effective concentration estimates to induce a 10% maximal response (EC10) and slope estimates of each dose-response curve of each strain to the laboratory reference strain, which enabled the identification of anthelmintics with population-wide differences to understand how genetics contribute to AR. Because genetically diverse strains displayed differential susceptibilities within and across anthelmintics, we show that C. elegans is a useful model for screening potential nematicides before applications to helminths. Third, we quantified the levels of anthelmintic response variation caused by genetic differences among individuals (heritability) to each drug and observed a significant correlation between exposure closest to the EC10 and the exposure that exhibited the most heritable responses. These results suggest drugs to prioritize in genome-wide association studies, which will enable the identification of AR genes.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Timothy A. Crombie
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
12
|
Takano K, de Hayr L, Carver S, Harvey RJ, Mounsey KE. Pharmacokinetic and pharmacodynamic considerations for treating sarcoptic mange with cross-relevance to Australian wildlife. Int J Parasitol Drugs Drug Resist 2023; 21:97-113. [PMID: 36906936 PMCID: PMC10023865 DOI: 10.1016/j.ijpddr.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Lachlan de Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
13
|
Bell AD, Chou HT, Paaby AB. Beyond the reference: gene expression variation and transcriptional response to RNAi in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.533964. [PMID: 36993640 PMCID: PMC10055391 DOI: 10.1101/2023.03.24.533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A universal feature of living systems is that natural variation in genotype underpins variation in phenotype. Yet, research in model organisms is often constrained to a single genetic background, the reference strain. Further, genomic studies that do evaluate wild strains typically rely on the reference strain genome for read alignment, leading to the possibility of biased inferences based on incomplete or inaccurate mapping; the extent of reference bias can be difficult to quantify. As an intermediary between genome and organismal traits, gene expression is well positioned to describe natural variability across genotypes generally and in the context of environmental responses, which can represent complex adaptive phenotypes. C. elegans sits at the forefront of investigation into small-RNA gene regulatory mechanisms, or RNA interference (RNAi), and wild strains exhibit natural variation in RNAi competency following environmental triggers. Here, we examine how genetic differences among five wild strains affect the C. elegans transcriptome in general and after inducing RNAi responses to two germline target genes. Approximately 34% of genes were differentially expressed across strains; 411 genes were not expressed at all in at least one strain despite robust expression in others, including 49 genes not expressed in reference strain N2. Despite the presence of hyper-diverse hotspots throughout the C. elegans genome, reference mapping bias was of limited concern: over 92% of variably expressed genes were robust to mapping issues. Overall, the transcriptional response to RNAi was strongly strain-specific and highly specific to the target gene, and the laboratory strain N2 was not representative of the other strains. Moreover, the transcriptional response to RNAi was not correlated with RNAi phenotypic penetrance; the two germline RNAi incompetent strains exhibited substantial differential gene expression following RNAi treatment, indicating an RNAi response despite failure to reduce expression of the target gene. We conclude that gene expression, both generally and in response to RNAi, differs across C. elegans strains such that choice of strain may meaningfully influence scientific conclusions. To provide a public, easily accessible resource for querying gene expression variation in this dataset, we introduce an interactive website at https://wildworm.biosci.gatech.edu/rnai/ .
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Han Ting Chou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
14
|
Hess JA, Eberhard ML, Segura-Lepe M, Grundner-Culemann K, Kracher B, Shryock J, Harrington J, Abraham D. A rodent model for Dirofilaria immitis, canine heartworm: parasite growth, development, and drug sensitivity in NSG mice. Sci Rep 2023; 13:976. [PMID: 36653420 PMCID: PMC9849205 DOI: 10.1038/s41598-023-27537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Heartworm disease, caused by Dirofilaria immitis, remains a significant threat to canines and felines. The development of parasites resistant to macrocyclic lactones (ML) has created a significant challenge to the control of the infection. The goal of this study was to determine if mice lacking a functional immune response would be susceptible to D. immitis. Immunodeficient NSG mice were susceptible to the infection, sustaining parasites for at least 15 weeks, with infective third-stage larvae molting and developing into the late fourth-stage larvae. Proteomic analysis of host responses to the infection revealed a complex pattern of changes after infection, with at least some of the responses directed at reducing immune control mechanisms that remain in NSG mice. NSG mice were infected with isolates of D. immitis that were either susceptible or resistant to MLs, as a population. The susceptible isolate was killed by ivermectin whereas the resistant isolate had improved survivability, while both isolates were affected by moxidectin. It was concluded that D. immitis survives in NSG mice for at least 15 weeks. NSG mice provide an ideal model for monitoring host responses to the infection and for testing parasites in vivo for susceptibility to direct chemotherapeutic activity of new agents.
Collapse
Affiliation(s)
- Jessica A Hess
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | - Jeffrey Shryock
- Boehringer Ingelheim Animal Health USA Inc., 6498 Jade Road, Fulton, MO, USA
| | - John Harrington
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Dr, Athens, GA, USA
| | - David Abraham
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Dube F, Hinas A, Delhomme N, Åbrink M, Svärd S, Tydén E. Transcriptomics of ivermectin response in Caenorhabditis elegans: Integrating abamectin quantitative trait loci and comparison to the Ivermectin-exposed DA1316 strain. PLoS One 2023; 18:e0285262. [PMID: 37141255 PMCID: PMC10159168 DOI: 10.1371/journal.pone.0285262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Parasitic nematodes pose a significant threat to human and animal health, as well as cause economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin (IVM), to control these parasites has led to widespread drug resistance. Identifying genetic markers of resistance in parasitic nematodes can be challenging, but the free-living nematode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed pools of 300 adult N2 worms to IVM (10-7 and 10-8 M) for 4 hours at 20°C, extracted total RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL. Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited an opposite expression in N2 and the DA1316 strain and were deemed potential candidates. Additionally, we compiled a list of potential candidates for further research including T-type calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.
Collapse
Affiliation(s)
- Faruk Dube
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Division of Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Wang W, Flury AG, Rodriguez AT, Garrison JL, Brem RB. A role for worm cutl-24 in background- and parent-of-origin-dependent ER stress resistance. BMC Genomics 2022; 23:842. [PMID: 36539699 PMCID: PMC9764823 DOI: 10.1186/s12864-022-09063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. RESULTS Here we discovered unique ER stress resistance in a wild Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene-disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring; cutl-24 was also a contributor to the trait in purebred backgrounds. CONCLUSIONS These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Andrew T Rodriguez
- Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
- Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA, United States.
- Global Consortium for Reproductive Longevity & Equality, Novato, CA, United States.
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, United States.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
17
|
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, Antonopoulos A, Chaudhry U, Flis I, Howell S, McIntyre J, Gilleard JS, Tait A, Mable B, Kaplan R, Sargison N, Britton C, Berriman M, Devaney E, Cotton JA. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep 2022; 41:111522. [PMID: 36261007 PMCID: PMC9597552 DOI: 10.1016/j.celrep.2022.111522] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - David Bartley
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alistair Antonopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ilona Flis
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sue Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary T2N 1N4, Canada
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
18
|
Widmayer SJ, Evans KS, Zdraljevic S, Andersen EC. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac114. [PMID: 35536194 PMCID: PMC9258552 DOI: 10.1093/g3journal/jkac114] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Quantitative genetics in Caenorhabditis elegans seeks to identify naturally segregating genetic variants that underlie complex traits. Genome-wide association studies scan the genome for individual genetic variants that are significantly correlated with phenotypic variation in a population, or quantitative trait loci. Genome-wide association studies are a popular choice for quantitative genetic analyses because the quantitative trait loci that are discovered segregate in natural populations. Despite numerous successful mapping experiments, the empirical performance of genome-wide association study has not, to date, been formally evaluated in C. elegans. We developed an open-source genome-wide association study pipeline called NemaScan and used a simulation-based approach to provide benchmarks of mapping performance in collections of wild C. elegans strains. Simulated trait heritability and complexity determined the spectrum of quantitative trait loci detected by genome-wide association studies. Power to detect smaller-effect quantitative trait loci increased with the number of strains sampled from the C. elegans Natural Diversity Resource. Population structure was a major driver of variation in mapping performance, with populations shaped by recent selection exhibiting significantly lower false discovery rates than populations composed of more divergent strains. We also recapitulated previous genome-wide association studies of experimentally validated quantitative trait variants. Our simulation-based evaluation of performance provides the community with critical context to pursue quantitative genetic studies using the C. elegans Natural Diversity Resource to elucidate the genetic basis of complex traits in C. elegans natural populations.
Collapse
Affiliation(s)
- Samuel J Widmayer
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Stefan Zdraljevic
- Department of Biological Chemistry, University of California—Los Angeles, Los Angeles, CA 90095, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Pallotto LM, Dilks CM, Park YJ, Smit RB, Lu B, Gopalakrishnan C, Gilleard JS, Andersen EC, Mains PE. Interactions of C. elegans β-tubulins with the microtubule inhibitor and anthelmintic drug albendazole. Genetics 2022; 221:6613138. [PMID: 35731216 DOI: 10.1093/genetics/iyac093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Parasitic nematodes are major human and agricultural pests, and benzimidazoles are amongst the most important broad spectrum anthelmintic drug class used for their control. Benzimidazole resistance is now widespread in many species of parasitic nematodes in livestock globally and an emerging concern for the sustainable control of human soil transmitted helminths. β-tubulin is the major benzimidazole target, although other genes may influence resistance. Among the six C. elegans β-tubulin genes, loss of ben-1 causes resistance without other apparent defects. Here, we explored the genetics of C. elegans β-tubulin genes in relation to the response to the benzimidazole derivative albendazole. The most highly expressed β-tubulin isotypes, encoded by tbb-1 and tbb-2, were known to be redundant with each other for viability, and their products are predicted not to bind benzimidazoles. We found that tbb-2 mutants, and to a lesser extent tbb-1 mutants, were hypersensitive to albendazole. The double mutant tbb-2 ben-1 is uncoordinated and short, resembling the wild type exposed to albendazole, but the tbb-1 ben-1 double mutant did not show the same phenotypes. These results suggest that tbb-2 is a modifier of ABZ sensitivity. To better understand how BEN-1 mutates to cause benzimidazole resistance, we isolated mutants resistant to albendazole and found that 15 of 16 mutations occurred in the ben-1 coding region. Mutations ranged from likely nulls to hypomorphs, and several corresponded to residues that cause resistance in other organisms. Null alleles of ben-1 are albendazole-resistant and BEN-1 shows high sequence identity with tubulins from other organisms, suggesting that many amino acid changes could cause resistance. However, our results suggest that missense mutations conferring resistance are not evenly distributed across all possible conserved sites. Independent of their roles in benzimidazole resistance, tbb-1 and tbb-2 may have specialized functions as null mutants of tbb-1 or tbb-2 were cold or heat sensitive, respectively.
Collapse
Affiliation(s)
- Linda M Pallotto
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Clayton M Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ye-Jean Park
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Brian Lu
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, T2N 4N1 Canada
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
20
|
The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits. Nat Commun 2022; 13:3462. [PMID: 35710766 PMCID: PMC9203580 DOI: 10.1038/s41467-022-31208-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Phenotypic variation in organism-level traits has been studied in Caenorhabditis elegans wild strains, but the impacts of differences in gene expression and the underlying regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal-level traits, including drug and toxicant responses. We perform transcriptomic analyses on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we perform genome-wide association mappings to investigate the genetic basis underlying gene expression variation and reveal complex genetic architectures. We find a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further use mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of using gene expression variation to understand how phenotypic diversity is generated.
Collapse
|
21
|
Andersen EC, Rockman MV. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 2022; 220:iyab156. [PMID: 35134197 PMCID: PMC8733454 DOI: 10.1093/genetics/iyab156] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/11/2021] [Indexed: 11/12/2022] Open
Abstract
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.
Collapse
Affiliation(s)
- Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Matthew V Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
22
|
Evans KS, van Wijk MH, McGrath PT, Andersen EC, Sterken MG. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet 2021; 37:933-947. [PMID: 34229867 DOI: 10.1016/j.tig.2021.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022]
Abstract
Although many studies have examined quantitative trait variation across many species, only a small number of genes and thereby molecular mechanisms have been discovered. Without these data, we can only speculate about evolutionary processes that underlie trait variation. Here, we review how quantitative and molecular genetics in the nematode Caenorhabditis elegans led to the discovery and validation of 37 quantitative trait genes over the past 15 years. Using these data, we can start to make inferences about evolution from these quantitative trait genes, including the roles that coding versus noncoding variation, gene family expansion, common versus rare variants, pleiotropy, and epistasis play in trait variation across this species.
Collapse
Affiliation(s)
- Kathryn S Evans
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|