1
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
2
|
Astacio JD, Melgarejo P, De Cal A, Espeso EA. Monilinia fructicola genes involved in the cell wall-degrading process in early nectarine infection. Int J Food Microbiol 2024; 419:110750. [PMID: 38776709 DOI: 10.1016/j.ijfoodmicro.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Brown rot symptoms may be linked to alterations in the gene expression pattern of genes associated with cell wall degradation. In this study, we identify key carbohydrate-active enzymes (CAZymes) involved in cell wall degradation by Monilinia fructicola, including pme2 and pme3 (pectin methylesterases), cut1 (cutinase) and nep2 (necrosis-inducing factor). The expression of these genes is significantly modulated by red and blue light during early nectarine infection. The polygalacturonase gene pg1 and the cellulase gene cel1 also exhibit photoinduction albeit to a lesser extent. Red and blue light cause an acceleration in the initial stages of brown rot development caused by M. fructicola on nectarines. Disease symptoms like tissue maceration were evident after an incubation period of 24 h followed by 14 h of light exposition, in contrast to the usual incubation period of 48 to 72 h. Furthermore, the culture media exerts an impact on gene regulation, suggesting a complex interplay between light and nutrient signalling pathways in M. fructicola. In addition, we observe that red light promotes colony growth on a 12 h photoperiod and consistently reduces conidiation. In contrast, blue light hampers growth rate on both the 12 h and the 8 h photoperiod but only diminishes conidiation on the 12 h photoperiod. These findings enhance our comprehension of genes associated with cell wall degradation and the environmental factors influencing brown rot development.
Collapse
Affiliation(s)
- Juan Diego Astacio
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain; Programa Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSIA, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Paloma Melgarejo
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain
| | - Antonieta De Cal
- Grupo de Hongos Fitopatógenos, Departamento de Protección Vegetal, Centro Nacional INIA-CSIC, 28040 Madrid, Spain.
| | - Eduardo Antonio Espeso
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro Investigaciones Biológicas Margarita Salas, CSIC (CIB-CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Navinraj S, Boopathi NM, Balasubramani V, Nakkeeran S, Raghu R, Gnanam R, Saranya N, Santhanakrishnan VP. Molecular Docking of Nimbolide Extracted from Leaves of Azadirachta indica with Protein Targets to Confirm the Antifungal, Antibacterial and Insecticidal Activity. Indian J Microbiol 2023; 63:494-512. [PMID: 38031617 PMCID: PMC10682360 DOI: 10.1007/s12088-023-01104-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Nimbolide, a tetranortriterpenoid (limonoid) compound isolated from the leaves of Azadirachta indica, was screened both in vitro and in silico for its antimicrobial activity against Fusarium oxysporum f. sp. cubense, Macrophomina phaseolina, Pythium aphanidermatum, Xanthomonas oryzae pv. oryzae, and insecticidal activity against Plutella xylostella. Nimbolide exhibited a concentration-dependent, broad spectrum of antimicrobial and insecticidal activity. P. aphanidermatum (82.77%) was more highly inhibited than F. oxysporum f. sp. cubense (64.46%) and M. phaseolina (43.33%). The bacterium X. oryzae pv. oryzae forms an inhibition zone of about 20.20 mm, and P. xylostella showed about 66.66% mortality against nimbolide. The affinity of nimbolide for different protein targets in bacteria, fungi, and insects was validated by in silico approaches. The 3D structure of chosen protein molecules was built by homology modelling in the SWISS-MODEL server, and molecular docking was performed with the SwissDock server. Docking of homology-modelled protein structures shows most of the chosen target proteins have a higher affinity for the furan ring of nimbolide. Additionally, the stability of the best-docked protein-ligand complex was confirmed using molecular dynamic simulation. Thus, the present in vitro and in silico studies confirm the bioactivity of nimbolide and provide a strong basis for the formulation of nimbolide-based biological pesticides. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01104-6.
Collapse
Affiliation(s)
- S. Navinraj
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - N. Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - V. Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - S. Nakkeeran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Raghu
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - R. Gnanam
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - N. Saranya
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - V. P. Santhanakrishnan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
4
|
Zhou D, Chen X, Chen X, Xia Y, Liu J, Zhou G. Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Front Microbiol 2023; 14:1252039. [PMID: 37876778 PMCID: PMC10591190 DOI: 10.3389/fmicb.2023.1252039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Phytopathogens pose a devastating threat to the productivity and yield of crops by causing destructive plant diseases in natural and agricultural environments. Hemibiotrophic pathogens have a variable-length biotrophic phase before turning to necrosis and are among the most invasive plant pathogens. Plant resistance to hemibiotrophic pathogens relies mainly on the activation of innate immune responses. These responses are typically initiated after the plant plasma membrane and various plant immune receptors detect immunogenic signals associated with pathogen infection. Hemibiotrophic pathogens evade pathogen-triggered immunity by masking themselves in an arms race while also enhancing or manipulating other receptors to promote virulence. However, our understanding of plant immune defenses against hemibiotrophic pathogens is highly limited due to the intricate infection mechanisms. In this review, we summarize the strategies that different hemibiotrophic pathogens interact with host immune receptors to activate plant immunity. We also discuss the significant role of the plasma membrane in plant immune responses, as well as the current obstacles and potential future research directions in this field. This will enable a more comprehensive understanding of the pathogenicity of hemibiotrophic pathogens and how distinct plant immune receptors oppose them, delivering valuable data for the prevention and management of plant diseases.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xingzhou Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Xinggang Chen
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
5
|
Henao L, Zade RSH, Restrepo S, Husserl J, Abeel T. Genomes of four Streptomyces strains reveal insights into putative new species and pathogenicity of scab-causing organisms. BMC Genomics 2023; 24:143. [PMID: 36959546 PMCID: PMC10037901 DOI: 10.1186/s12864-023-09190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Genomes of four Streptomyces isolates, two putative new species (Streptomyces sp. JH14 and Streptomyces sp. JH34) and two non thaxtomin-producing pathogens (Streptomyces sp. JH002 and Streptomyces sp. JH010) isolated from potato fields in Colombia were selected to investigate their taxonomic classification, their pathogenicity, and the production of unique secondary metabolites of Streptomycetes inhabiting potato crops in this region. The average nucleotide identity (ANI) value calculated between Streptomyces sp. JH34 and its closest relatives (92.23%) classified this isolate as a new species. However, Streptomyces sp. JH14 could not be classified as a new species due to the lack of genomic data of closely related strains. Phylogenetic analysis based on 231 single-copy core genes, confirmed that the two pathogenic isolates (Streptomyces sp. JH010 and JH002) belong to Streptomyces pratensis and Streptomyces xiamenensis, respectively, are distant from the most well-known pathogenic species, and belong to two different lineages. We did not find orthogroups of protein-coding genes characteristic of scab-causing Streptomycetes shared by all known pathogenic species. Most genes involved in biosynthesis of known virulence factors are not present in the scab-causing isolates (Streptomyces sp. JH002 and Streptomyces sp. JH010). However, Tat-system substrates likely involved in pathogenicity in Streptomyces sp. JH002 and Streptomyces sp. JH010 were identified. Lastly, the presence of a putative mono-ADP-ribosyl transferase, homologous to the virulence factor scabin, was confirmed in Streptomyces sp. JH002. The described pathogenic isolates likely produce virulence factors uncommon in Streptomyces species, including a histidine phosphatase and a metalloprotease potentially produced by Streptomyces sp. JH002, and a pectinesterase, potentially produced by Streptomyces sp. JH010. Biosynthetic gene clusters (BGCs) showed the presence of clusters associated with the synthesis of medicinal compounds and BGCs potentially linked to pathogenicity in Streptomyces sp. JH010 and JH002. Interestingly, BGCs that have not been previously reported were also found. Our findings suggest that the four isolates produce novel secondary metabolites and metabolites with medicinal properties.
Collapse
Affiliation(s)
- Laura Henao
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | | | - Silvia Restrepo
- Laboratory of Mycology and Phytopathology - (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, 111711, Bogotá, Colombia
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628 XE, Delft, Netherlands.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
6
|
Li S, Wang Z, Gao M, Li T, Cui X, Zu J, Sang S, Fan W, Zhang H. Intraspecific Comparative Analysis Reveals Genomic Variation of Didymella arachidicola and Pathogenicity Factors Potentially Related to Lesion Phenotype. BIOLOGY 2023; 12:biology12030476. [PMID: 36979167 PMCID: PMC10045276 DOI: 10.3390/biology12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Didymella arachidicola is one of the most important fungal pathogens, causing foliar disease and leading to severe yield losses of peanuts (Arachis hypogaea L.) in China. Two main lesion phenotypes of peanut web blotch have been identified as reticulation type (R type) and blotch type (B type). As no satisfactory reference genome is available, the genomic variations and pathogenicity factors of D. arachidicola remain to be revealed. In the present study, we collected 41 D. arachidicola isolates from 26 geographic locations across China (33 for R type and 8 for B type). The chromosome-scale genome of the most virulent isolate (YY187) was assembled as a reference using PacBio and Hi-C technologies. In addition, we re-sequenced 40 isolates from different sampling sites. Genome-wide alignments showed high similarity among the genomic sequences from the 40 isolates, with an average mapping rate of 97.38%. An average of 3242 SNPs and 315 InDels were identified in the genomic variation analysis, which revealed an intraspecific polymorphism in D. arachidicola. The comparative analysis of the most and least virulent isolates generated an integrated gene set containing 512 differential genes. Moreover, 225 genes individually or simultaneously harbored hits in CAZy-base, PHI-base, DFVF, etc. Compared with the R type reference, the differential gene sets from all B type isolates identified 13 shared genes potentially related to lesion phenotype. Our results reveal the intraspecific genomic variation of D. arachidicola isolates and pathogenicity factors potentially related to different lesion phenotypes. This work sets a genomic foundation for understanding the mechanisms behind genomic diversity driving different pathogenic phenotypes of D. arachidicola.
Collapse
Affiliation(s)
- Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Zhenyu Wang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Meng Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaowei Cui
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Junhuai Zu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Suling Sang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Wanwan Fan
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Haiyan Zhang
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control, International Joint Research Laboratory for Crop Protection of Henan, Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
7
|
Pirc K, Albert I, Nürnberger T, Anderluh G. Disruption of plant plasma membrane by Nep1-like proteins in pathogen-plant interactions. THE NEW PHYTOLOGIST 2023; 237:746-750. [PMID: 36210522 PMCID: PMC10100409 DOI: 10.1111/nph.18524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Lipid membrane destruction by microbial pore-forming toxins (PFTs) is a ubiquitous mechanism of damage to animal cells, but is less prominent in plants. Nep1-like proteins (NLPs) secreted by phytopathogens that cause devastating crop diseases, such as potato late blight, represent the only family of microbial PFTs that effectively damage plant cells by disrupting the integrity of the plant plasma membrane. Recent research has elucidated the molecular mechanism of NLP-mediated membrane damage, which is unique among microbial PFTs and highly adapted to the plant membrane environment. In this review, we cover recent insight into how NLP cytolysins damage plant membranes and cause cell death.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and NanobiotechnologyNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| | - Isabell Albert
- Molecular Plant PhysiologyFAU Erlangen‐Nüremberg91058ErlangenGermany
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP)Eberhard‐Karls‐University Tübingen72076TübingenGermany
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006JohannesburgSouth Africa
| | - Gregor Anderluh
- Department of Molecular Biology and NanobiotechnologyNational Institute of ChemistryHajdrihova 191000LjubljanaSlovenia
| |
Collapse
|
8
|
Zhou Z, Yang X, Wu C, Chen Z, Dai T. Whole-Genome Sequence Resource of Phytophthora pini, the Causal Pathogen of Foliage Blight and Shoot Dieback of Rhododendron pulchrum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:944-948. [PMID: 36074693 DOI: 10.1094/mpmi-05-22-0106-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Ziwei Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Plant and Pest Diagnostic Clinic, Department of Plant Industry, Clemson University, Pendleton, SC, U.S.A
| | - Cuiping Wu
- Animal, Plant and Food Inspection Center, Nanjing Customs, Nanjing, Jiangsu, China
| | - Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Daly P, Zhou D, Shen D, Chen Y, Xue T, Chen S, Zhang Q, Zhang J, McGowan J, Cai F, Pang G, Wang N, Sheikh TMM, Deng S, Li J, Soykam HO, Kara I, Fitzpatrick DA, Druzhinina IS, Bayram Akcapinar G, Wei L. Genome of Pythium myriotylum Uncovers an Extensive Arsenal of Virulence-Related Genes among the Broad-Host-Range Necrotrophic Pythium Plant Pathogens. Microbiol Spectr 2022; 10:e0226821. [PMID: 35946960 PMCID: PMC9430622 DOI: 10.1128/spectrum.02268-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.
Collapse
Affiliation(s)
- Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yifan Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Taiqiang Xue
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Qimeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jamie McGowan
- Genome Evolution Laboratory, Maynooth University, Maynooth, Ireland
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Nan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Taha Majid Mahmood Sheikh
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Li
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hüseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kara
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Irina S. Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Department of Accelerated Taxonomy, The Royal Botanic Gardens Kew, London, United Kingdom
| | - Günseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
SsNEP2 Contributes to the Virulence of Sclerotinia sclerotiorum. Pathogens 2022; 11:pathogens11040446. [PMID: 35456121 PMCID: PMC9026538 DOI: 10.3390/pathogens11040446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
Sclerotinia sclerotiorum is a notorious soilborne fungal pathogen that causes serious economic losses globally. The necrosis and ethylene-inducible peptide 1 (NEP1)-like proteins (NLPs) were previously shown to play an important role in pathogenicity in fungal and oomycete pathogens. Here, we generated S. sclerotiorum necrosis and ethylene-inducible peptide 2 (SsNEP2) deletion mutant through homologous recombination and found that SsNEP2 contributes to the virulence of S. sclerotiorum without affecting the development of mycelia, the formation of appressoria, or the secretion of oxalic acid. Although knocking out SsNEP2 did not affect fungal sensitivity to oxidative stress, it did lead to decreased accumulation of reactive oxygen species (ROS) in S. sclerotiorum. Furthermore, Ssnlp24SsNEP2 peptide derived from SsNEP2 triggered host mitogen-activated protein kinase (MAPK) activation, increased defense marker gene expression, and enhanced resistance to Hyaloperonospora arabidopsidis Noco2. Taken together, our data suggest that SsNEP2 is involved in fungal virulence by affecting ROS levels in S. sclerotiorum. It can serve as a pathogen-associated molecular pattern (PAMP) and trigger host pattern triggered immunity to promote the necrotrophic lifestyle of S. sclerotiorum.
Collapse
|
11
|
Pirc K, Clifton LA, Yilmaz N, Saltalamacchia A, Mally M, Snoj T, Žnidaršič N, Srnko M, Borišek J, Parkkila P, Albert I, Podobnik M, Numata K, Nürnberger T, Viitala T, Derganc J, Magistrato A, Lakey JH, Anderluh G. An oomycete NLP cytolysin forms transient small pores in lipid membranes. SCIENCE ADVANCES 2022; 8:eabj9406. [PMID: 35275729 PMCID: PMC8916740 DOI: 10.1126/sciadv.abj9406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, Oxford OX11 OQX, UK
| | - Neval Yilmaz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | | | - Mojca Mally
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Srnko
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Molecular Plant Physiology, FAU Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology—COMPETE, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alessandra Magistrato
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
- National Research Council Institute of Material (CNR-IOM), 34136 Trieste, Italy
| | - Jeremy H. Lakey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|