1
|
Somoza SC, Bonfante P, Giovannetti M. Breaking barriers: improving time and space resolution of arbuscular mycorrhizal symbiosis with single-cell sequencing approaches. Biol Direct 2024; 19:67. [PMID: 39154166 PMCID: PMC11330620 DOI: 10.1186/s13062-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
The cell and molecular bases of arbuscular mycorrhizal (AM) symbiosis, a crucial plant-fungal interaction for nutrient acquisition, have been extensively investigated by coupling traditional RNA sequencing techniques of roots sampled in bulk, with methods to capture subsets of cells such as laser microdissection. These approaches have revealed central regulators of this complex relationship, yet the requisite level of detail to effectively untangle the intricacies of temporal and spatial development remains elusive.The recent adoption of single-cell RNA sequencing (scRNA-seq) techniques in plant research is revolutionizing our ability to dissect the intricate transcriptional profiles of plant-microbe interactions, offering unparalleled insights into the diversity and dynamics of individual cells during symbiosis. The isolation of plant cells is particularly challenging due to the presence of cell walls, leading plant researchers to widely adopt nuclei isolation methods. Despite the increased resolution that single-cell analyses offer, it also comes at the cost of spatial perspective, hence, it is necessary the integration of these approaches with spatial transcriptomics to obtain a comprehensive overview.To date, few single-cell studies on plant-microbe interactions have been published, most of which provide high-resolution cell atlases that will become crucial for fully deciphering symbiotic interactions and addressing future questions. In AM symbiosis research, key processes such as the mutual recognition of partners during arbuscule development within cortical cells, or arbuscule senescence and degeneration, remain poorly understood, and these advancements are expected to shed light on these processes and contribute to a deeper understanding of this plant-fungal interaction.
Collapse
Affiliation(s)
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy.
| |
Collapse
|
2
|
Kratchmarov R, Djeddi S, Dunlap G, He W, Jia X, Burk CM, Ryan T, McGill A, Allegretti JR, Kataru RP, Mehrara BJ, Taylor EM, Agarwal S, Bhattacharyya N, Bergmark RW, Maxfield AZ, Lee S, Roditi R, Dwyer DF, Boyce JA, Buchheit KM, Laidlaw TM, Shreffler WG, Rao DA, Gutierrez-Arcelus M, Brennan PJ. TCF1-LEF1 co-expression identifies a multipotent progenitor cell (T H2-MPP) across human allergic diseases. Nat Immunol 2024; 25:902-915. [PMID: 38589618 DOI: 10.1038/s41590-024-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.
Collapse
Affiliation(s)
- Radomir Kratchmarov
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Djeddi
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenqin He
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojiong Jia
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Burk
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tessa Ryan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alanna McGill
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin M Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shailesh Agarwal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Neil Bhattacharyya
- Massachusetts Eye & Ear Institute, Harvard Medical School, Boston, MA, USA
| | - Regan W Bergmark
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA
| | - Alice Z Maxfield
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Lee
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel Roditi
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ethgen LM, Pastore C, Lin C, Reed DR, Hung LY, Douglas B, Sinker D, Herbert DR, Belle NM. A Trefoil factor 3-Lingo2 axis restrains proliferative expansion of type-1 T helper cells during GI nematode infection. Mucosal Immunol 2024; 17:238-256. [PMID: 38336020 PMCID: PMC11086637 DOI: 10.1016/j.mucimm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Host defense at the mucosal interface requires collaborative interactions between diverse cell lineages. Epithelial cells damaged by microbial invaders release reparative proteins such as the Trefoil factor family (TFF) peptides that functionally restore barrier integrity. However, whether TFF peptides and their receptors also serve instructive roles for immune cell function during infection is incompletely understood. Here, we demonstrate that the intestinal trefoil factor, TFF3, restrains (T cell helper) TH1 cell proliferation and promotes host-protective type 2 immunity against the gastrointestinal parasitic nematode Trichuris muris. Accordingly, T cell-specific deletion of the TFF3 receptor, leucine-rich repeat and immunoglobulin containing nogo receptor 2 (LINGO2), impairs TH2 cell commitment, allows proliferative expansion of interferon (IFN)g+ cluster of differentiation (CD)4+ TH1 cells and blocks normal worm expulsion through an IFNg-dependent mechanism. This study indicates that TFF3, in addition to its known tissue reparative functions, drives anti-helminth immunity by controlling the balance between TH1/TH2 subsets.
Collapse
Affiliation(s)
- Lucas M Ethgen
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Sinker
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nicole M Belle
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Britton C, Laing R, McNeilly TN, Perez MG, Otto TD, Hildersley KA, Maizels RM, Devaney E, Gillan V. New technologies to study helminth development and host-parasite interactions. Int J Parasitol 2023; 53:393-403. [PMID: 36931423 DOI: 10.1016/j.ijpara.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 03/17/2023]
Abstract
How parasites develop and survive, and how they stimulate or modulate host immune responses are important in understanding disease pathology and for the design of new control strategies. Microarray analysis and bulk RNA sequencing have provided a wealth of data on gene expression as parasites develop through different life-cycle stages and on host cell responses to infection. These techniques have enabled gene expression in the whole organism or host tissue to be detailed, but do not take account of the heterogeneity between cells of different types or developmental stages, nor the spatial organisation of these cells. Single-cell RNA-seq (scRNA-seq) adds a new dimension to studying parasite biology and host immunity by enabling gene profiling at the individual cell level. Here we review the application of scRNA-seq to establish gene expression cell atlases for multicellular helminths and to explore the expansion and molecular profile of individual host cell types involved in parasite immunity and tissue repair. Studying host-parasite interactions in vivo is challenging and we conclude this review by briefly discussing the applications of organoids (stem-cell derived mini-tissues) to examine host-parasite interactions at the local level, and as a potential system to study parasite development in vitro. Organoid technology and its applications have developed rapidly, and the elegant studies performed to date support the use of organoids as an alternative in vitro system for research on helminth parasites.
Collapse
Affiliation(s)
- Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Roz Laing
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Matias G Perez
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Katie A Hildersley
- Disease Control Department, Moredun Research Institute, Penicuik, United Kingdom
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Victoria Gillan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Bao K, Isik Can U, Miller MM, Brown IK, Dell'Aringa M, Dooms H, Seibold MA, Scott-Browne J, Lee Reinhardt R. A bifurcated role for c-Maf in Th2 and Tfh2 cells during helminth infection. Mucosal Immunol 2023; 16:357-372. [PMID: 37088263 PMCID: PMC10290510 DOI: 10.1016/j.mucimm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Differences in transcriptomes, transcription factor usage, and function have identified T follicular helper 2 (Tfh2) cells and T helper 2 (Th2) cells as distinct clusters of differentiation 4+",(CD4) T-cell subsets in settings of type-2 inflammation. Although the transcriptional programs driving Th2 cell differentiation and cytokine production are well defined, dependence on these classical Th2 programs by Tfh2 cells is less clear. Using cytokine reporter mice in combination with transcription factor inference analysis, the b-Zip transcription factor c-Maf and its targets were identified as an important regulon in both Th2 and Tfh2 cells. Conditional deletion of c-Maf in T cells confirmed its importance in type-2 cytokine expression by Th2 and Tfh2 cells. However, while c-Maf was not required for Th2-driven helminth clearance or lung eosinophilia, it was required for Tfh2-driven Immunoglobulin E production and germinal center formation. This differential regulation of cell-mediated and humoral immunity by c-Maf was a result of redundant pathways in Th2 cells that were absent in Tfh2 cells, and c-Maf-specific mechanisms in Tfh2 cells that were absent in Th2 cells. Thus, despite shared expression by Tfh2 and Th2 cells, c-Maf serves as a unique regulator of Tfh2-driven humoral hallmarks during type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, USA
| | - Uryan Isik Can
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mindy M Miller
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Ivy K Brown
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Mark Dell'Aringa
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA
| | - Hans Dooms
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, USA; Department of Pediatrics, National Jewish Health, Denver, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, USA
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Richard Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, USA; Department of Immunology and Genomic Medicine, National Jewish Health, Denver, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
7
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Morgan RC, Kee BL. Genomic and Transcriptional Mechanisms Governing Innate-like T Lymphocyte Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:208-216. [PMID: 35821098 DOI: 10.4049/jimmunol.2200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Innate-like lymphocytes are a subset of lymphoid cells that function as a first line of defense against microbial infection. These cells are activated by proinflammatory cytokines or broadly expressed receptors and are able to rapidly perform their effector functions owing to a uniquely primed chromatin state that is acquired as a part of their developmental program. These cells function in many organs to protect against disease, but they release cytokines and cytotoxic mediators that can also lead to severe tissue pathologies. Therefore, harnessing the capabilities of these cells for therapeutic interventions will require a deep understanding of how these cells develop and regulate their effector functions. In this review we discuss recent advances in the identification of the transcription factors and the genomic regions that guide the development and function of invariant NKT cells and we highlight related mechanisms in other innate-like lymphocytes.
Collapse
Affiliation(s)
- Roxroy C Morgan
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL; and
| | - Barbara L Kee
- Cancer Biology and Immunology, Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Pinilla C, Giulianotti MA, Santos RG, Houghten RA. Identification of B Cell and T Cell Epitopes Using Synthetic Peptide Combinatorial Libraries. Curr Protoc 2022; 2:e378. [PMID: 35263045 DOI: 10.1002/cpz1.378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article presents a combinatorial library method that consists of the synthesis and screening of mixture-based synthetic combinatorial libraries of peptide molecules to identify B and T cell epitopes. The protocols employ peptide libraries to identify peptides recognized by MAbs and T cells. The first protocol uses a positional scanning peptide library made up of hexapeptides to identify antigenic determinants recognized by MAbs. The 120 mixtures in the hexapeptide library are tested for their inhibitory activity in a competitive ELISA. The second protocol uses a decapeptide library to identify T cell peptide ligands. The 200 mixtures of the decapeptide library are tested for their ability to induce T cell activation. Support protocols cover optimization of the assay conditions for each MAb or T cell, to achieve the best level of sensitivity and reproducibility, and preparation of a hexapeptide library, along with deconvolution approaches. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Screening peptide library for antibody inhibition Basic Protocol 2: Screening a peptide library to identify CD4+ Or CD8+ T cell ligands Support Protocol 1: Optimizing antigen and antibody concentrations for screening assay Support Protocol 2: Preparing a positional scanning peptide library.
Collapse
Affiliation(s)
- Clemencia Pinilla
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | - Marc A Giulianotti
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| | | | - Richard A Houghten
- Center for Translational Science, Florida International University, Port St. Lucie, Florida
| |
Collapse
|