1
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|
2
|
Wang Y, Kim B, Gong S, Park J, Zhu M, Wong EM, Park AY, Chernoff J, Guo F. Control of OPC proliferation and repopulation by the intellectual disability gene PAK1 under homeostatic and demyelinating conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591153. [PMID: 38746444 PMCID: PMC11092442 DOI: 10.1101/2024.04.26.591153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Appropriate proliferation and repopulation of oligodendrocyte progenitor cells (OPCs) determine successful (re)myelination in homeostatic and demyelinating brains. Activating mutations in p21-activated kinase 1 (PAK1) cause intellectual disability, neurodevelopmental abnormality, and white matter anomaly in children. It remains unclear if and how PAK1 regulates oligodendroglial development. Here, we report that PAK1 controls proliferation and regeneration of OPCs. Unlike differentiating oligodendrocytes, OPCs display high PAK1 activity which maintains them in a proliferative state by modulating PDGFRa-mediated mitogenic signaling. PAK1-deficient or kinase-inhibited OPCs reduce their proliferation capacity and population expansion. Mice carrying OPC-specific PAK1 deletion or kinase inhibition are populated with fewer OPCs in the homeostatic and demyelinated CNS than control mice. Together, our findings suggest that kinase-activating PAK1 mutations stall OPCs in a progenitor state, impacting timely oligodendroglial differentiation in the CNS of affected children and that PAK1 is a potential molecular target for replenishing OPCs in demyelinating lesions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Bokyung Kim
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Shuaishuai Gong
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Meina Zhu
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Evelyn M. Wong
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Audrey Y. Park
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| |
Collapse
|
3
|
Ansardamavandi A, Nikfarjam M, He H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023; 12:2692. [PMID: 38067120 PMCID: PMC10705971 DOI: 10.3390/cells12232692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Angiogenesis has been associated with numbers of solid tumours. Anti-angiogenesis drugs starve tumours of nutrients and oxygen but also make it difficult for a chemo reagent to distribute into a tumour, leading to aggressive tumour growth. Anti-angiogenesis drugs do not appear to improve the overall survival rate of pancreatic cancer. Vessel normalisation is merging as one of the new approaches for halting tumour progression by facilitating the tumour infiltration of immune cells and the delivery of chemo reagents. Targeting p21-activated kinases (PAKs) in cancer has been shown to inhibit cancer cell growth and improve the efficacy of chemotherapy. Inhibition of PAK enhances anti-tumour immunity and stimulates the efficacy of immune checkpoint blockades. Inhibition of PAK also improves Car-T immunotherapy by reprogramming the vascular microenvironment. This review summarizes current research on PAK's role in tumour vasculature and therapeutical response, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
- Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| |
Collapse
|
4
|
Rahman RJ, Rijal R, Jing S, Chen TA, Ismail I, Gomer RH. Polyphosphate uses mTOR, pyrophosphate, and Rho GTPase components to potentiate bacterial survival in Dictyostelium. mBio 2023; 14:e0193923. [PMID: 37754562 PMCID: PMC10653871 DOI: 10.1128/mbio.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Although most bacteria are quickly killed after phagocytosis by a eukaryotic cell, some pathogenic bacteria escape death after phagocytosis. Pathogenic Mycobacterium species secrete polyP, and the polyP is necessary for the bacteria to prevent their killing after phagocytosis. Conversely, exogenous polyP prevents the killing of ingested bacteria that are normally killed after phagocytosis by human macrophages and the eukaryotic microbe Dictyostelium discoideum. This suggests the possibility that in these cells, a signal transduction pathway is used to sense polyP and prevent killing of ingested bacteria. In this report, we identify key components of the polyP signal transduction pathway in D. discoideum. In cells lacking these components, polyP is unable to inhibit killing of ingested bacteria. The pathway components have orthologs in human cells, and an exciting possibility is that pharmacologically blocking this pathway in human macrophages would cause them to kill ingested pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ryan J. Rahman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Shiyu Jing
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Te-An Chen
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Issam Ismail
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Davidson A, Hume PJ, Greene NP, Koronakis V. Salmonella invasion of a cell is self-limiting due to effector-driven activation of N-WASP. iScience 2023; 26:106643. [PMID: 37168569 PMCID: PMC10164908 DOI: 10.1016/j.isci.2023.106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Salmonella Typhimurium drives uptake into non-phagocytic host cells by injecting effector proteins that reorganize the actin cytoskeleton. The host actin regulator N-WASP has been implicated in bacterial entry, but its precise role is not clear. We demonstrate that Cdc42-dependent N-WASP activation, instigated by the Cdc42-activating effector SopE2, strongly impedes Salmonella uptake into host cells. This inhibitory pathway is predominant later in invasion, with the ubiquitin ligase activity of the effector SopA specifically interfering with negative Cdc42-N-WASP signaling at early stages. The cell therefore transitions from being susceptible to invasion, into a state almost completely recalcitrant to bacterial uptake, providing a mechanism to limit the number of internalized Salmonella. Our work raises the possibility that Cdc42-N-WASP, known to be activated by numerous bacterial and viral species during infection and commonly assumed to promote pathogen uptake, is used to limit the entry of multiple pathogens.
Collapse
Affiliation(s)
| | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, UK
- Corresponding author
| |
Collapse
|
6
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
7
|
Hu B, Zhang H, Xu M, Li L, Wu M, Zhang S, Liu X, Xia W, Xu K, Xiao J, Zhang H, Ni L. Delivery of Basic Fibroblast Growth Factor Through an In Situ Forming Smart Hydrogel Activates Autophagy in Schwann Cells and Improves Facial Nerves Generation via the PAK-1 Signaling Pathway. Front Pharmacol 2022; 13:778680. [PMID: 35431972 PMCID: PMC9011134 DOI: 10.3389/fphar.2022.778680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although studies have shown that basic fibroblast growth factor (bFGF) can activate autophagy and promote peripheral nerve repair, the role and the molecular mechanism of action of bFGF in the facial nerve are not clear. In this study, a thermosensitive in situ forming poloxamer hydrogel was used as a vehicle to deliver bFGF for treating facial nerve injury (FNI) in the rat model. Using H&E and Masson’s staining, we found that bFGF hydrogel can promote the functional recovery and regeneration of the facial nerve. Furthermore, studies on the mechanism showed that bFGF can promote FNI recovery by promoting autophagy and inhibiting apoptosis. Additionally, this study demonstrated that the role of hydrogel binding bFGF in nerve repair was mediated through the activation of the PAK1 signaling pathway in Schwann cells (SCs). These results indicated that poloxamer thermosensitive hydrogel loaded with bFGF can significantly restore the morphology and function of the injured facial nerve by promoting autophagy and inhibiting apoptosis by activating the PAK1 pathway, which can provide a promising strategy for FNI recovery.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Hanbo Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Menglu Xu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Man Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Susu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Liu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weidong Xia
- Department of Burn, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Liyan Ni
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| |
Collapse
|