1
|
Wang D, Zuo S, Ge J, Qu H, Wu J, Yi N, Shi L, Wang Y, Mo Y, Fan C, He Y, Chen P, Zhou M, Xiang B, Xiong W, Guo W, Zeng Z, Guo C. circTP63-N suppresses the proliferation and metastasis of nasopharyngeal carcinoma via engaging with HSP90AB1 to modulate the YAP1/Hippo signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2025; 68:689-705. [PMID: 39754006 DOI: 10.1007/s11427-023-2737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 02/27/2025]
Abstract
Circular RNAs (circRNAs) play pivotal roles in the development and progression of various diseases, including malignant tumors. However, the biological functions and the underlying mechanisms of many circRNAs remain elusive. In this study, we identified a novel circRNA, circTP63-N, generated through the splicing of exons 2-4 of the TP63 gene in nasopharyngeal carcinoma (NPC). circTP63-N was found to be downregulated in clinical samples of NPC. Both in vitro and in vivo experiments unequivocally demonstrated that circTP63-N inhibits the proliferation and metastasis of NPC cells. Further investigations revealed that circTP63-N interacted with the HSP90AB1 protein, leading to the recruitment of LATS/YAP1 proteins. This, in turn, induced phosphorylation and ubiquitination-dependent degradation of YAP1, resulting in reduced nuclear translocation of YAP1 and inhibition of the transcriptional activation of downstream oncogenic genes, including INHBA, MMP3, and CCNE2. Our findings highlight the identification of circTP63-N, a novel circRNA encoded by an important tumor-relevant gene TP63 and elucidate its molecular mechanism as a tumor suppressor in NPC. These insights offer novel potential molecular markers and therapeutic targets for the clinical diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Sicheng Zuo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Na Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
- Furong Laboratory, Changsha, 410078, China
| | - Wenjia Guo
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830011, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China.
- Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830011, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China.
- Furong Laboratory, Changsha, 410078, China.
| |
Collapse
|
2
|
Singh DR, Zhang Y, White SJ, Nelson SE, Fogarty SA, Pawelski AS, Kansra AS, Kenney SC. Inhibition of the Integrated stress response by Epstein-Barr virus oncoprotein LMP1 attenuates epithelial cell differentiation and lytic viral reactivation. PLoS Pathog 2025; 21:e1012934. [PMID: 39951426 PMCID: PMC11828382 DOI: 10.1371/journal.ppat.1012934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
EBV infects normal oral keratinocytes (NOKs) and plays an essential role in undifferentiated nasopharyngeal carcinoma (NPC). We previously showed that the EBV oncogene, LMP1, promotes proliferation and inhibits spontaneous differentiation in telomerase-immortalized NOKs grown in growth factor-restricted conditions. Here we have further examined the phenotypes of NOKs infected with wild-type EBV (WT EBV) versus an LMP1-deleted EBV mutant (ΔLMP1 EBV) in growth factor-restricted conditions. RNA-seq results show that WT EBV-infected NOKs not only have reduced differentiation, but also decreased expression of genes activated by the integrated stress response (ISR) pathway, in comparison to the ΔLMP1 EBV-infected cells. The ISR pathway is mediated by increased phosphorylation of the eIF2α translation initiation factor, leading to decreased translation of most cellular proteins but increased expression of some proteins, including ATF4 and CHOP. Immunoblot analyses confirmed that WT EBV-infected NOKs have decreased phosphorylation of eIF2α in comparison to uninfected and ΔLMP1 EBV-infected cells and showed that expression of LMP1 alone is sufficient to inhibit eIF2α phosphorylation. We found that LMP1 decreases the activity of two different eIF2α kinases, PERK and GCN2, in WT EBV-infected NOKs, resulting in decreased expression of the ISR-induced transcription factors, ATF4 and CHOP, in WT EBV-infected versus uninfected and ΔLMP1 EBV-infected NOKs. Furthermore, we found that both GCN2 and PERK activity are required for efficient TPA-induced lytic EBV reactivation and TPA-mediated epithelial cell differentiation. In addition, we demonstrate that over-expression of CHOP is sufficient to induce both lytic EBV reactivation and epithelial cell differentiation in WT EBV-infected NOKs and NPC cells and show that this effect is mediated by CHOP activation of the differentiation-inducing transcription factors, KLF4 and BLIMP1. Our results suggest that inhibition of the ISR pathway by the EBV oncoprotein, LMP1, may promote early NPC development by preventing epithelial cell differentiation and lytic EBV reactivation.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Yitao Zhang
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sophia J. White
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, Jones SH, Prosser HK, Diouf AA, Gittens OE, Edsall LE, Chen X, Rowden H, Dunn KA, Guo R, VonHandorf A, Leong MML, Ernst K, Kaufman KM, Lawson LP, Gewurz B, Zhao B, Kottyan LC, Weirauch MT. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics 2024; 25:273. [PMID: 38475709 PMCID: PMC10935964 DOI: 10.1186/s12864-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Collapse
Affiliation(s)
- Kenyatta C M F Viel
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew R Hass
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cailing Yin
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sydney H Jones
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hayley K Prosser
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Olivia E Gittens
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Katelyn A Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ben Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Rani AQ, Nurmemet D, Liffick J, Khan A, Mitchell D, Li J, Zhao B, Liu X. Conditional Cell Reprogramming and Air-Liquid Interface Modeling Life Cycle of Oncogenic Viruses (HPV and EBV) in Epithelial Cells and Virus-Associated Human Carcinomas. Viruses 2023; 15:1388. [PMID: 37376685 DOI: 10.3390/v15061388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation. Cancer cell lines are limited and not appropriate for studying the viral life cycle, for example, natural viral life cycles of HPV and EBV, and their persistence and latency in epithelial cells are poorly understood, since these processes are highly related to epithelial differentiation. Therefore, there is an urgent need of reliable human physiological cell models to study viral life cycle and cancer initiation. Conditional cell reprogramming (CCR) is a rapid and robust cell culture system, where the cells can be established from minimally invasive or noninvasive specimens and their lineage functions preserved during the long-term culture. These CR cells retain their ability to differentiate at air-liquid interface (ALI). Here, we recapitulated the applications of CR and ALI approaches in modeling host-virus interactions and viral-mediated tumorigenesis.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Dilber Nurmemet
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liffick
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Anam Khan
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Hayman IR, Temple RM, Burgess CK, Ferguson M, Liao J, Meyers C, Sample CE. New insight into Epstein-Barr virus infection using models of stratified epithelium. PLoS Pathog 2023; 19:e1011040. [PMID: 36630458 PMCID: PMC9873185 DOI: 10.1371/journal.ppat.1011040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.
Collapse
Affiliation(s)
- Ian R. Hayman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachel M. Temple
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Cole K. Burgess
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mary Ferguson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jason Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| |
Collapse
|
8
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
9
|
Singh DR, Nelson SE, Pawelski AS, Cantres-Velez JA, Kansra AS, Pauly NP, Bristol JA, Hayes M, Ohashi M, Casco A, Lee D, Fogarty SA, Lambert PF, Johannsen EC, Kenney SC. Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathog 2022; 18:e1010868. [PMID: 36190982 PMCID: PMC9529132 DOI: 10.1371/journal.ppat.1010868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Juan A. Cantres-Velez
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alisha S. Kansra
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Stuart A. Fogarty
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell 2022; 185:3652-3670. [PMID: 36113467 PMCID: PMC9529843 DOI: 10.1016/j.cell.2022.08.026] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous, oncogenic virus that is associated with a number of different human malignancies as well as autoimmune disorders. The expression of EBV viral proteins and non-coding RNAs contribute to EBV-mediated disease pathologies. The virus establishes life-long latency in the human host and is adept at evading host innate and adaptive immune responses. In this review, we discuss the life cycle of EBV, the various functions of EBV-encoded proteins and RNAs, the ability of the virus to activate and evade immune responses, as well as the neoplastic and autoimmune diseases that are associated with EBV infection in the human population.
Collapse
Affiliation(s)
- Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shannon C Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, and Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|