1
|
Duan M, Bao L, Eman M, Han D, Zhang Y, Zheng B, Yang S, Rao MJ. The Ectopic Expression of the MpDIR1(t) Gene Enhances the Response of Plants from Arabidopsis thaliana to Biotic Stress by Regulating the Defense Genes and Antioxidant Flavonoids. PLANTS (BASEL, SWITZERLAND) 2024; 13:2692. [PMID: 39409562 PMCID: PMC11478391 DOI: 10.3390/plants13192692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
The Defective in Induced Resistance 1 (DIR1) gene, a member of the lipid transferase proteins (LTPs), plays a crucial role in plant defense against pathogens. While previous transcriptomic studies have highlighted the significant expression of citrus LTPs during biotic stress, functional annotations of LTPs in the Citrus genera remain limited. In this study, we cloned the Murraya paniculata DIR1 (MpDIR1(t)) gene and overexpressed it in Arabidopsis thaliana to evaluate its stress response mechanisms against biotic stress. The transgenic Arabidopsis lines showed fewer disease symptoms in response to Pseudomonas syringae (Pst DC3000) compared to wild-type Arabidopsis. Defense and pathogenesis-responsive genes such as PR1, PR4, PR5, and WRKY12 were significantly induced, showing a 2- to 12-fold increase in all transgenic lines compared to the wild type. In addition, the Pst DC3000-infected transgenic Arabidopsis lines demonstrated elevated levels of flavonoids and salicylic acid (SA), along with higher expression of SA-related genes, compared to the wild type. Moreover, all transgenic lines possessed lower reactive oxygen species levels and higher activity of antioxidant defense enzymes such as superoxide dismutase, peroxidase, and catalase under Pst DC3000 stress compared to the wild type. The up-regulation of defense genes, activation of the SA pathway, accumulation of flavonoids, and reinforcement of antioxidant defense mechanisms in transgenic Arabidopsis lines in response to Pst DC3000 underscore the critical role of MpDIR1(t) in fortifying plant immunity. Thus, MpDIR1(t) constitutes a promising candidate gene for improving bacterial disease resistance in commercial citrus cultivars.
Collapse
Affiliation(s)
- Mingzheng Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Liuyuan Bao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Momina Eman
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
- Institute of Pure & Applied Biology (IP&AB), Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Duo Han
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Yongzhi Zhang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
| | - Shunqiang Yang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China; (M.D.); (L.B.); (D.H.); (Y.Z.)
| | - Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (M.E.); (B.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang Y, Hu C, Yin Y, Ren K, He Y, Gao Y, Han H, Zhu C, Wang W. CRISPR/Cas12a-Responsive Smart DNA Hydrogel for Sensitive Electrochemiluminescence Detection of the Huanglongbing Outer Membrane Protein Gene. Anal Chem 2024; 96:11611-11618. [PMID: 38943567 DOI: 10.1021/acs.analchem.4c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Citrus Huanglongbing (HLB) is known as the cancer of citrus, where Candidatus Liberibacter asiaticus (CLas) is the most prevalent strain causing HLB. In this study, we report a novel electrochemiluminescence (ECL) biosensor for the highly sensitive detection of the CLas outer membrane protein (Omp) gene by coupling rolling circle amplification (RCA) with a CRISPR/Cas12a-responsive smart DNA hydrogel. In the presence of the target, a large number of amplicons are generated through RCA. The amplicons activate the trans-cleavage activity of CRISPR/Cas12a through hybridizing with crRNA, triggering the response of smart DNA hydrogel to release the encapsulated AuAg nanoclusters (AuAg NCs) on the electrode and therefore leading to a decreased ECL signal. The ECL intensity change (I0 - I) is positively correlated with the concentration of the target in the range 50 fM to 5 nM, with a limit of detection of 40 fM. The performance of the sensor has also been evaluated with 10 samples of live citrus leaves (five HLB negative and five HLB positive), and the result is in excellent agreement with the gold standard qPCR result. The sensing strategy has expanded the ECL versatility for detecting varying levels of dsDNA or ssDNA in plants with high sensitivity.
Collapse
Affiliation(s)
- Yutian Zhang
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Can Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yashi Yin
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Kejing Ren
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingsi He
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanru Gao
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenjing Wang
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Yuan Z, Li G, Zhang H, Peng Z, Ding W, Wen H, Zhou H, Zeng J, Chen J, Xu J. Four novel Cit7GlcTs functional in flavonoid 7- O-glucoside biosynthesis are vital to flavonoid biosynthesis shunting in citrus. HORTICULTURE RESEARCH 2024; 11:uhae098. [PMID: 38863995 PMCID: PMC11165160 DOI: 10.1093/hr/uhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.
Collapse
Affiliation(s)
- Ziyu Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Liu C, Chang X, Li F, Yan Y, Zuo X, Huang G, Li R. Transcriptome analysis of Citrus sinensis reveals potential responsive events triggered by Candidatus Liberibacter asiaticus. PROTOPLASMA 2024; 261:499-512. [PMID: 38092896 DOI: 10.1007/s00709-023-01911-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 04/18/2024]
Abstract
Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaopeng Chang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fuxuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yana Yan
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiru Zuo
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
5
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
6
|
Li R, Wang X, Hu Y, Huang G. Analysis of huanglongbing-associated RNA-seq data reveals disturbances in biological processes within Citrus spp. triggered by Candidatus Liberibacter asiaticus infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1388163. [PMID: 38660443 PMCID: PMC11039969 DOI: 10.3389/fpls.2024.1388163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Introduction Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
7
|
Huang G, Hu Y, Li F, Zuo X, Wang X, Li F, Li R. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing. FRONTIERS IN PLANT SCIENCE 2024; 15:1369883. [PMID: 38601304 PMCID: PMC11004388 DOI: 10.3389/fpls.2024.1369883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Introduction Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiru Zuo
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fengyao Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Nakabachi A, Suzaki T. Ultrastructure of the bacteriome and bacterial symbionts in the Asian citrus psyllid, Diaphorina citri. Microbiol Spectr 2024; 12:e0224923. [PMID: 38047691 PMCID: PMC10783097 DOI: 10.1128/spectrum.02249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Omics analyses suggested a mutually indispensable tripartite association among the host D. citri and organelle-like bacteriome associates, Carsonella and Profftella, which are vertically transmitted through host generations. This relationship is based on the metabolic complementarity among these organisms, which is partly enabled by horizontal gene transfer between partners. However, little was known about the fine morphology of the symbionts and the bacteriome, the interface among these organisms. As a first step to address this issue, the present study performed transmission electron microscopy, which revealed previously unrecognized ultrastructures, including aggregations of ribosomes in Carsonella, numerous tubes and occasional protrusions of Profftella, apparently degrading Profftella, and host organelles with different abundance and morphology in distinct cell types. These findings provide insights into the behaviors of the symbionts and host cells to maintain the symbiotic relationship in D. citri.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
9
|
Du P, Hu J, Du M, Gao X, Yang W, Zhang C, Zou X, Wang X, Li W. Interaction of a bacterial non-classically secreted RNase HⅠ with a citrus B-Box zinc finger protein delays flowering in Arabidopsis thaliana and suppresses the expression of FLOWERING LOCUS T. Microbiol Res 2024; 278:127541. [PMID: 37972521 DOI: 10.1016/j.micres.2023.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Ribonuclease HI (RNase HI) is well conserved across prokaryotes and eukaryotes, and has long been known to localize in the nucleic acid-containing cellular compartments for acting as an R-loop eraser but has never been determined to be a secreted protein. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious α-proteobacterium that causes Huanglongbing (HLB), a devastating citrus disease often associated with flowering out of season. In this study, using the SecretomeP program coupled with an Escherichia coli-based alkaline phosphatase assay, we demonstrated that the CLas RNase HI (LasRNHⅠ) was a non-classically secreted protein. Further experiments identified that LasRNHⅠ could interact with a citrus B-box zinc finger protein CsBBX28 in the plant nucleolus. The in vitro assays indicated that CsBBX28 dramatically enhanced the R-loop-degrading activity of LasRNHⅠ. Remarkably, co-expression of CsBBX28 and LasRNHⅠ in Arabidopsis thaliana led to a much later flowering time than that of wild-type Arabidopsis, as well as that of the transgenic A. thaliana expressing only CsBBX28 or LasRNHⅠ, and lastingly and significantly repressed transcription of FLOWERING LOCUS T (FT), a floral pathway integrator. Similarly, ectopic expression of LasRNHⅠ in citrus greatly reduced the transcription level of FT. The data together disclosed the extracellular secretion of LasRNHⅠ, and that LasRNHⅠ physically interacted with CsBBX28 and served as a flowering repressor through suppressing the FT expression, suggesting a novel role of RNase HI in the bacteria interacting with the host plants.
Collapse
Affiliation(s)
- Peixiu Du
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junxia Hu
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Meixia Du
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xiaoyu Gao
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Wendi Yang
- Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China
| | - Chao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071001, PR China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing 400716, PR China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, PR China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Department of Plant Protection, Beijing University of Agriculture, Beijing 102206, PR China.
| |
Collapse
|
10
|
Zuo X, Yang C, Yan Y, Huang G, Li R. Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns. PLANT SIGNALING & BEHAVIOR 2023; 18:2294426. [PMID: 38104280 PMCID: PMC10730155 DOI: 10.1080/15592324.2023.2294426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing identification, phylogenetic analysis, detection of conserved motifs and domains, gene structure, cis-acting elements, gene expression trends, and subcellular localization analysis. Our findings established that a total of 22 CsTRXs with thioredoxin domains were identified in the genome of C. sinensis. Phylogenetic analysis indicated that CsTRXs were divided into six subclusters. Conserved motifs analysis of CsTRXs indicated a wide range of conserved motifs. A significant number of cis-acting elements associated with both abiotic and biotic stress responses, inclusive of numerous phytohormone-related elements, were detected in the promoter regions of CsTRXs. The expression levels of CsTRXs including CsTRXf1, CsTRXh1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were observed to be reduced upon pathogen infection. Subcellular localization analysis found that CsTRXf1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were predominantly localized in chloroplasts, whereas CsTRXh1 was distributed indiscriminately. This research yields integral data on CsTRXs, facilitating future efforts to decipher the gene functions of CsTRXs.
Collapse
Affiliation(s)
| | | | - Yana Yan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
11
|
Takasu R, Yasuda Y, Izu T, Nakabachi A. Diaphorin, a polyketide produced by a bacterial endosymbiont of the Asian citrus psyllid, adversely affects the in vitro gene expression with ribosomes from Escherichia coli and Bacillus subtilis. PLoS One 2023; 18:e0294360. [PMID: 37963163 PMCID: PMC10645341 DOI: 10.1371/journal.pone.0294360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria), an obligate mutualist of an important agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera). Our previous study demonstrated that diaphorin, at physiological concentrations in D. citri, inhibits the growth and cell division of Bacillus subtilis (Firmicutes) but promotes the growth and metabolic activity of Escherichia coli (Gammaproteobacteria). This unique property of diaphorin may aid microbial mutualism in D. citri, potentially affecting the transmission of "Candidatus Liberibacter spp." (Alphaproteobacteria), the pathogens of the most destructive citrus disease Huanglongbing. Moreover, this property may be exploited to promote microbes' efficiency in producing industrial materials. However, the mechanism underlying this activity is unknown. Diaphorin belongs to the family of pederin-type compounds, which inhibit protein synthesis in eukaryotes by binding to eukaryotic ribosomes. Therefore, as a first step to assess diaphorin's direct influence on bacterial gene expression, this study examined the effect of diaphorin on the in vitro translation using ribosomes of B. subtilis and E. coli, quantifying the production of the green fluorescent protein. The results showed that the gene expression involving B. subtilis and E. coli ribosomes along with five millimolar diaphorin was 29.6% and 13.1%, respectively, less active than the control. This suggests that the diaphorin's adverse effects on B. subtilis are attributed to, at least partly, its inhibitory effects on gene expression. Moreover, as ingredients of the translation system were common other than ribosomes, the greater inhibitory effects observed with the B. subtilis ribosome imply that the ribosome is among the potential targets of diaphorin. On the other hand, the results also imply that diaphorin's positive effects on E. coli are due to targets other than the core machinery of transcription and translation. This study demonstrated for the first time that a pederin congener affects bacterial gene expression.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
12
|
Bertaccini A. Phloem-Localized Insect-Transmitted Bacteria Associated with Plant Diseases. Microorganisms 2023; 11:2494. [PMID: 37894152 PMCID: PMC10609563 DOI: 10.3390/microorganisms11102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In the last three decades, an increasing number of plant diseases associated with the presence of phloem-localized insect-transmitted bacteria have been observed around the world, causing serious economic losses [...].
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
13
|
Xu L, Mo K, Ran D, Ma J, Zhang L, Sun Y, Long Q, Jiang G, Zhao X, Zou X. An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker. HORTICULTURE RESEARCH 2023; 10:uhad159. [PMID: 37719271 PMCID: PMC10500150 DOI: 10.1093/hr/uhad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023]
Abstract
The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.
Collapse
Affiliation(s)
- Lanzhen Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kaiqing Mo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Danlu Ran
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Lehuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qin Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Guojin Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Xiaochun Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| | - Xiuping Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
14
|
Shi J, Gong Y, Shi H, Ma X, Zhu Y, Yang F, Wang D, Fu Y, Lin Y, Yang N, Yang Z, Zeng C, Li W, Zhou C, Wang X, Qiao Y. ' Candidatus Liberibacter asiaticus' secretory protein SDE3 inhibits host autophagy to promote Huanglongbing disease in citrus. Autophagy 2023; 19:2558-2574. [PMID: 37249424 PMCID: PMC10392736 DOI: 10.1080/15548627.2023.2213040] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinan Gong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yating Fu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Chunhua Zeng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
15
|
Xu J, Dai S, Wang X, Gentile A, Zhang Z, Xie Q, Su Y, Li D, Wang B. Actin-Depolymerizing Factor Gene Family Analysis Revealed That CsADF4 Increased the Sensitivity of Sweet Orange to Bacterial Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:3054. [PMID: 37687300 PMCID: PMC10490069 DOI: 10.3390/plants12173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The actin-depolymerizing factor (ADF) gene family regulates changes in actin. However, the entire ADF family in the sweet orange Citrus sinensis has not been systematically identified, and their expressions in different organs and biotic stress have not been determined. In this study, through phylogenetic analysis of the sweet orange ADF gene family, seven CsADFs were found to be highly conserved and sparsely distributed across the four chromosomes. Analysis of the cis-regulatory elements in the promoter region showed that the CsADF gene had the potential to impact the development of sweet oranges under biotic or abiotic stress. Quantitative fluorescence analysis was then performed. Seven CsADFs were differentially expressed against the invasion of Xcc and CLas pathogens. It is worth noting that the expression of CsADF4 was significantly up-regulated at 4 days post-infection. Subcellular localization results showed that CsADF4 was localized in both the nucleus and the cytoplasm. Overexpression of CsADF4 enhanced the sensitivity of sweet orange leaves to Xcc. These results suggest that CsADFs may regulate the interaction of C. sinensis and bacterial pathogens, providing a way to further explore the function and mechanisms of ADF in the sweet orange.
Collapse
Affiliation(s)
- Jing Xu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| | - Suming Dai
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xue Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| | - Alessandra Gentile
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- Department of Agriculture and Food Science, University of Catania, 95123 Catania, Italy
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha 410128, China
| | - Qingxiang Xie
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
| | - Yajun Su
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Dazhi Li
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Bing Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China (X.W.)
- National Citrus Improvement Center, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
16
|
Pandey SS, Xu J, Achor DS, Li J, Wang N. Microscopic and Transcriptomic Analyses of Early Events Triggered by ' Candidatus Liberibacter asiaticus' in Young Flushes of Huanglongbing-Positive Citrus Trees. PHYTOPATHOLOGY 2023; 113:985-997. [PMID: 36449527 DOI: 10.1094/phyto-10-22-0360-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling, which are commonly associated with pathogen infections, compared with the healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome biogenesis/metabolism. Additionally, a time-course quantitative reverse transcription-PCR-based expression analysis visualized the induced expression of companion cell-specific genes, phloem protein 2 genes, and sucrose transport genes in young flushes triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
17
|
Chen L, Liu Y, Wu F, Zhang J, Cui X, Wu S, Deng X, Xu M. Citrus tristeza virus Promotes the Acquisition and Transmission of ‘Candidatus Liberibacter Asiaticus’ by Diaphorina citri. Viruses 2023; 15:v15040918. [PMID: 37112898 PMCID: PMC10143984 DOI: 10.3390/v15040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is an insect vector of phloem-limited ‘Candidatus Liberibacter asiatus’ (CLas), the presumed pathogen of citrus Huanglongbing (HLB). Recently, our lab has preliminarily found it acquired and transmitted Citrus tristeza virus (CTV), which was previously suggested to be vectored by species of aphids. However, the influences of one of the pathogens on the acquisition and transmission efficiency of the other pathogen remain unknown. In this study, CLas and CTV acquisition and transmission by D. citri at different development stages under field and laboratory conditions were determined. CTV could be detected from the nymphs, adults, and honeydew of D. citri but not from the eggs and exuviates of them. CLas in plants might inhibit CTV acquisition by D. citri as lower CTV–positive rates and CTV titers were detected in D. citri collected from HLB-affected trees compared to those from CLas–free trees. D. citri were more likely to obtain CTV than CLas from host plants co-infected with the two pathogens. Intriguingly, CTV in D. citri facilitated the acquisition and transmission of CLas, but CLas carried by D. citri had no significant effect on the transmission of CTV by the same vector. Molecular detection and microscopy methods confirmed the enrichment of CTV in the midgut after a 72-h acquisition access period. Collectively, these results raise essential scientific questions for further research on the molecular mechanism of pathogen transmission by D. citri and provide new ideas for the comprehensive prevention and control of HLB and CTV.
Collapse
Affiliation(s)
- Longtong Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Fengnian Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jingtian Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Shitong Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Hosseinzadeh S, Heck M. Variations on a theme: factors regulating interaction between Diaphorina citri and "Candidatus Liberibacter asiaticus" vector and pathogen of citrus huanglongbing. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101025. [PMID: 36990150 DOI: 10.1016/j.cois.2023.101025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Diaphorina citri, the Asian citrus psyllid, is a vector of Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB), the world's most serious disease of citrus. Owing to the relevancy and urgency of HLB research, the study of transmission biology in the HLB pathosystem has been a significant area of research. The focus of this article is to summarize and synthesize recent advancements in transmission biology between D. citri and CLas to create an updated view of the research landscape and to identify avenues for future research. Variability appears to play an important role in the transmission of CLas by D. citri. We advocate that it is important to understand the genetic basis for and environmental factors contributing to CLas transmission and how that variation may be exploited to develop and improve HLB control tactics.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michelle Heck
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Dai WS, Peng T, Wang M, Liu JH. Genome-wide identification and comparative expression profiling of the WRKY transcription factor family in two Citrus species with different Candidatus Liberibacter asiaticus susceptibility. BMC PLANT BIOLOGY 2023; 23:159. [PMID: 36959536 PMCID: PMC10037894 DOI: 10.1186/s12870-023-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Salicylic Acid (SA) is a pivotal phytohormone in plant innate immunity enhancement of triggered by various pathogens, such as Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). WRKY is a plant specific transcription factor (TF) family, which plays crucial roles in plant response to biotic stresses. So far, the evolutionary history, functions, and expression patterns under SA treatment and CLas infection of WRKY family are poorly understood in Citrus, despite the release of the genome of several Citrus species. A comprehensive genomic and expressional analysis is worth to conduct for this family. RESULTS Here, a genome-wide identification of WRKY TFs was performed in two Citrus species: Citrus sinensis (HLB-sensitive) and Poncirus trifoliata (HLB-tolerant). In total, 52 CsWRKYs and 51 PtrWRKYs were identified, whose physical and chemical properties, chromosome locations, phylogenetic relationships and structural characteristics were comparatively analyzed. Especially, expression patterns of these WRKY genes before and after SA treatment and CLas infection were compared. Based on this result, seven pairs of orthologous WRKY genes showing opposite expression patterns in two Citrus species were screened out. Moreover, two pairs of orthologous WRKY genes with significant differences in the number or type of stress-responsive cis-elements in the promoter regions were discovered. Subcellular localization and transcriptional activation activity assays revealed that these two pairs of orthologous genes are classic WRKY TFs localize in the nucleus and could function as transcriptional activators. CONCLUSION In this study, we systematically analyzed the genomic characterization of WRKY family in two Citrus species, together with the analyses of expression patterns under SA signaling and CLas infection. Our study laid a foundation for further study on the function of WRKY TFs in HLB response and SA signaling of Citrus.
Collapse
Affiliation(s)
- Wen-Shan Dai
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Ting Peng
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Min Wang
- College of Life Sciences, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Ji-Hong Liu
- College of Horticulture and Forestry Sciences, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
20
|
Basu S, Sineva E, Nguyen L, Sikdar N, Park JW, Sinev M, Kunta M, Gupta G. Host-derived chimeric peptides clear the causative bacteria and augment host innate immunity during infection: A case study of HLB in citrus and fire blight in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:929478. [PMID: 36618616 PMCID: PMC9816411 DOI: 10.3389/fpls.2022.929478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Bacterial diseases cause severe losses in the production and revenue of many fruit crops, including citrus and apple. Huanglongbing (HLB) in citrus and fire blight in apple are two deadly diseases without any cure. In this article, we introduce a novel therapy for HLB and fire blight by enhancing the innate immunity of the host plants. Specifically, we constructed in silico a library of chimeras containing two different host peptides with observed or predicted antibacterial activity. Subsequently, we performed bactericidal and toxicity tests in vitro to select a few non-toxic chimeras with high antibacterial activity. Finally, we conducted ex planta studies to show that not only do the chimeras clear the causative bacteria from citrus leaves with HLB and from apple leaves with fire blight but they also augment the host's innate immunity during infection. This platform technology can be extended to design host-derived chimeras against multiple pathogenic bacteria that cause diseases in plants and animals of agricultural importance and in humans.
Collapse
Affiliation(s)
- Supratim Basu
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| | - Elena Sineva
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| | - Liza Nguyen
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| | - Narattam Sikdar
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| | - Jong Won Park
- Texas A&M Univ.-Kingsville Citrus Center, Weslaco, TX, United States
| | - Mikhail Sinev
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| | - Madhurababu Kunta
- Texas A&M Univ.-Kingsville Citrus Center, Weslaco, TX, United States
| | - Goutam Gupta
- New Mexico Consortium, NMC-Biolab at Santa Fe Business Incubator, Santa Fe, NM, United States
| |
Collapse
|
21
|
Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in " Candidatus Liberibacter asiaticus". Int J Mol Sci 2022; 23:ijms231710024. [PMID: 36077424 PMCID: PMC9456138 DOI: 10.3390/ijms231710024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.
Collapse
|
22
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
23
|
Silva Gonçalves O, Bonandi Barreiros R, Martins Tupy S, Ferreira Santana M. A reverse-ecology framework to uncover the potential metabolic interplay among 'Candidatus Liberibacter' species, Citrus hosts and psyllid vector. Gene X 2022; 837:146679. [PMID: 35752379 DOI: 10.1016/j.gene.2022.146679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
'Candidatus Liberibacter' species have developed a dependency on essential nutrients and metabolites from the host cell, as a result of substantial genome reduction. Still, it is difficult to state which nutrients they acquire and whether or not they are metabolically reliant. We used a reverse-ecology model to investigate the potential metabolic interactions of 'Ca Liberibacter' species, Citrus, and the psyllid Diaphorina citri in the huanglongbing disease pyramid. Our findings show that hosts (citrus and psyllid) tend to support the nutritional needs of 'Ca. Liberibacter' species, implying that the pathogen's metabolism has become tightly linked to hosts, which may reflect in the parasite lifestyle of this important genus.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Ralph Bonandi Barreiros
- Departmento de Fitotecnia, Laboratório de Biotecnologia de Plantas Horticulas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Brazil
| | - Sumaya Martins Tupy
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|