1
|
The Kingella kingae PilC1 MIDAS Motif Is Essential for Type IV Pilus Adhesive Activity and Twitching Motility. Infect Immun 2023; 91:e0033822. [PMID: 36537792 PMCID: PMC9872652 DOI: 10.1128/iai.00338-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Kingella kingae is an emerging pathogen that has recently been identified as a leading cause of osteoarticular infections in young children. Colonization with K. kingae is common, with approximately 10% of young children carrying this organism in the oropharynx at any given time. Adherence to epithelial cells represents the first step in K. kingae colonization of the oropharynx, a prerequisite for invasive disease. Type IV pili and the pilus-associated PilC1 and PilC2 proteins have been shown to mediate K. kingae adherence to epithelial cells, but the molecular mechanism of this adhesion has remained unknown. Metal ion-dependent adhesion site (MIDAS) motifs are commonly found in integrins, where they function to promote an adhesive interaction with a ligand. In this study, we identified a potential MIDAS motif in K. kingae PilC1 which we hypothesized was directly involved in mediating type IV pilus adhesive interactions. We found that the K. kingae PilC1 MIDAS motif was required for bacterial adherence to epithelial cell monolayers and extracellular matrix proteins and for twitching motility. Our results demonstrate that K. kingae has co-opted a eukaryotic adhesive motif for promoting adherence to host structures and facilitating colonization.
Collapse
|
2
|
Kingella kingae Virulence Factors and Insights into Pathogenicity. Microorganisms 2022; 10:microorganisms10050997. [PMID: 35630439 PMCID: PMC9147705 DOI: 10.3390/microorganisms10050997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 01/29/2023] Open
Abstract
The emergence of Kingella kingae as an important etiology of pediatric osteoarticular infections over the past three decades has led to significant research efforts focused on understanding the pathogenicity of this fastidious Gram-negative bacterium. This work has uncovered multiple virulence factors that likely play key roles in the ability of the organism to colonize the upper respiratory tract, breach the epithelial barrier, and disseminate to distal sites of infection. Herein the current body of knowledge about K. kingae virulence factors is reviewed in the context of K. kingae disease pathogenesis. The work summarized here has identified multiple targets for therapeutic intervention as well as potential vaccine antigens.
Collapse
|
3
|
Porsch EA, Hernandez KA, Morreale DP, Montoya NR, Yount TA, St Geme JW. Pathogenic determinants of Kingella kingae disease. Front Pediatr 2022; 10:1018054. [PMID: 36304526 PMCID: PMC9592894 DOI: 10.3389/fped.2022.1018054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a leading etiology of septic arthritis, osteomyelitis, and bacteremia and an occasional cause of endocarditis in young children. The pathogenesis of K. kingae disease begins with colonization of the upper respiratory tract followed by breach of the respiratory epithelial barrier and hematogenous spread to distant sites of infection, primarily the joints, bones, and endocardium. As recognition of K. kingae as a pathogen has increased, interest in defining the molecular determinants of K. kingae pathogenicity has grown. This effort has identified numerous bacterial surface factors that likely play key roles in the pathogenic process of K. kingae disease, including type IV pili and the Knh trimeric autotransporter (adherence to the host), a potent RTX-family toxin (epithelial barrier breach), and multiple surface polysaccharides (complement and neutrophil resistance). Herein, we review the current state of knowledge of each of these factors, providing insights into potential approaches to the prevention and/or treatment of K. kingae disease.
Collapse
Affiliation(s)
- Eric A Porsch
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kevin A Hernandez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel P Morreale
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nina R Montoya
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor A Yount
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph W St Geme
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|