1
|
Petkidis A, Andriasyan V, Greber UF. Machine learning for cross-scale microscopy of viruses. CELL REPORTS METHODS 2023; 3:100557. [PMID: 37751685 PMCID: PMC10545915 DOI: 10.1016/j.crmeth.2023.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 09/28/2023]
Abstract
Despite advances in virological sciences and antiviral research, viruses continue to emerge, circulate, and threaten public health. We still lack a comprehensive understanding of how cells and individuals remain susceptible to infectious agents. This deficiency is in part due to the complexity of viruses, including the cell states controlling virus-host interactions. Microscopy samples distinct cellular infection stages in a multi-parametric, time-resolved manner at molecular resolution and is increasingly enhanced by machine learning and deep learning. Here we discuss how state-of-the-art artificial intelligence (AI) augments light and electron microscopy and advances virological research of cells. We describe current procedures for image denoising, object segmentation, tracking, classification, and super-resolution and showcase examples of how AI has improved the acquisition and analyses of microscopy data. The power of AI-enhanced microscopy will continue to help unravel virus infection mechanisms, develop antiviral agents, and improve viral vectors.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Dynesen LT, Fernandez I, Coquin Y, Delaplace M, Montange T, Njouom R, Bilounga-Ndongo C, Rey FA, Gessain A, Backovic M, Buseyne F. Neutralization of zoonotic retroviruses by human antibodies: Genotype-specific epitopes within the receptor-binding domain from simian foamy virus. PLoS Pathog 2023; 19:e1011339. [PMID: 37093892 PMCID: PMC10159361 DOI: 10.1371/journal.ppat.1011339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.
Collapse
Affiliation(s)
- Lasse Toftdal Dynesen
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Manon Delaplace
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| |
Collapse
|
3
|
Comparison of a Genotype 1 and a Genotype 2 Macaque Foamy Virus env Gene Indicates Distinct Infectivity and Cell-Cell Fusion but Similar Tropism and Restriction of Cell Entry by Interferon-Induced Transmembrane Proteins. Viruses 2023; 15:v15020262. [PMID: 36851478 PMCID: PMC9960098 DOI: 10.3390/v15020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Foamy viruses (FVs) are naturally found in many different animals and also in primates with the notable exception of humans, but zoonotic infections are common. In several species, two different envelope (env) gene sequence clades or genotypes exist. We constructed a simian FV (SFV) clone containing a reporter gene cassette. In this background, we compared the env genes of the SFVmmu-DPZ9524 (genotype 1) and of the SFVmmu_R289hybAGM (genotype 2) isolates. SFVmmu_R289hybAGM env-driven infection was largely resistant to neutralization by SFVmmu-DPZ9524-neutralizing sera. While SFVmmu_R289hybAGM env consistently effected higher infectivity and cell-cell fusion, we found no differences in the cell tropism conferred by either env across a range of different cells. Infection by both viruses was weakly and non-significantly enhanced by simultaneous knockout of interferon-induced transmembrane proteins (IFITMs) 1, 2, and 3 in A549 cells, irrespective of prior interferon stimulation. Infection was modestly reduced by recombinant overexpression of IFITM3, suggesting that the SFV entry step might be weakly restricted by IFITM3 under some conditions. Overall, our results suggest that the different env gene clades in macaque foamy viruses induce genotype-specific neutralizing antibodies without exhibiting overt differences in cell tropism, but individual env genes may differ significantly with regard to fitness.
Collapse
|