1
|
Yang X, Wuchty S, Liang Z, Ji L, Wang B, Zhu J, Zhang Z, Dong Y. Multi-modal features-based human-herpesvirus protein-protein interaction prediction by using LightGBM. Brief Bioinform 2024; 25:bbae005. [PMID: 38279649 PMCID: PMC10818167 DOI: 10.1093/bib/bbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 01/01/2021] [Indexed: 01/28/2024] Open
Abstract
The identification of human-herpesvirus protein-protein interactions (PPIs) is an essential and important entry point to understand the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes. The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami FL, 33146, USA
- Department of Biology, University of Miami, Miami FL, 33146, USA
- Institute of Data Science and Computation, University of Miami, Miami, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Li Ji
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Jialin Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|