1
|
Bonomini A, Zhang J, Ju H, Zago A, Pacetti M, Tabarrini O, Massari S, Liu X, Mercorelli B, Zhan P, Loregian A. Synergistic activity of an RNA polymerase PA-PB1 interaction inhibitor with oseltamivir against human and avian influenza viruses in cell culture and in ovo. Antiviral Res 2024; 230:105980. [PMID: 39117284 DOI: 10.1016/j.antiviral.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against highly pathogenic avian influenza viruses (HPAIVs) both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against HPAIV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China
| | - Alessia Zago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Martina Pacetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China.
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 250012, Jinan, Shandong, PR China.
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Pekarek MJ, Weaver EA. Influenza B Virus Vaccine Innovation through Computational Design. Pathogens 2024; 13:755. [PMID: 39338946 PMCID: PMC11434669 DOI: 10.3390/pathogens13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
As respiratory pathogens, influenza B viruses (IBVs) cause a significant socioeconomic burden each year. Vaccine and antiviral development for influenza viruses has historically viewed IBVs as a secondary concern to influenza A viruses (IAVs) due to their lack of animal reservoirs compared to IAVs. However, prior to the global spread of SARS-CoV-2, the seasonal epidemics caused by IBVs were becoming less predictable and inducing more severe disease, especially in high-risk populations. Globally, researchers have begun to recognize the need for improved prevention strategies for IBVs as a primary concern. This review discusses what is known about IBV evolutionary patterns and the effect of the spread of SARS-CoV-2 on these patterns. We also analyze recent advancements in the development of novel vaccines tested against IBVs, highlighting the promise of computational vaccine design strategies when used to target both IBVs and IAVs and explain why these novel strategies can be employed to improve the effectiveness of IBV vaccines.
Collapse
Affiliation(s)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Gu C, Chen Y, Li H, Wang J, Liu S. Considerations when treating influenza infections with oseltamivir. Expert Opin Pharmacother 2024; 25:1301-1316. [PMID: 38995220 DOI: 10.1080/14656566.2024.2376660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Since the coronavirus disease 2019-mandated social distancing policy has been lifted worldwide, the circulation of influenza is expected to resume. Currently, oseltamivir is approved as the first-line agent for influenza prevention and treatment. AREAS COVERED This paper reviews the updated evidence in the pharmacology, resistance mechanisms, clinical pharmacy management, and real-world data on oseltamivir for influenza. EXPERT OPINION Oseltamivir is an oral prodrug of oseltamivir carboxylate, an influenza A and B neuraminidase inhibitor. Recently, the therapeutic efficacy of oseltamivir has been demonstrated in several trials. Oseltamivir is generally well-tolerated but may lead to neuropsychiatric events and bleeding. Oseltamivir-resistant influenza virus has been associated with the H275Y mutation in the influenza A(H1N1)pdm09 virus, while most strains are still sensitive to oseltamivir. Dose adjustment for oseltamivir should be based on creatinine clearance and body weight in pediatric patients with renal failure. According to real-world data from Nanfang Hospital, the annual number of patients prescribed oseltamivir declined from 35,711 in 2019 to 8,971 in 2020, with marked increases in 2022 (20,213) and 2023 (18,071). Among the 206 inpatients, children aged < 6 years who were treated with oseltamivir had the shortest duration to defervescence.
Collapse
Affiliation(s)
- Chunping Gu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Department of Pharmacy, The Seventh Affiliated Hospital, Southern Medical University, Foshan, China
| | - Haobin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- MOE Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Vega-Rodriguez W, Ly H. Host-directed antiviral strategy: The potential of SYK inhibitor R406 against influenza A virus infection. J Med Virol 2024; 96:e29717. [PMID: 38808574 DOI: 10.1002/jmv.29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Affiliation(s)
- Widaliz Vega-Rodriguez
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
5
|
Qiu C, Cheng F, Ye X, Wu Z, Ning H, Liu S, Wu L, Zhang Y, Shi J, Jiang X. Study on the clinical efficacy and safety of baloxavir marboxil tablets in the treatment of influenza A. Front Med (Lausanne) 2024; 11:1339368. [PMID: 38646560 PMCID: PMC11026552 DOI: 10.3389/fmed.2024.1339368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Objective To evaluate the clinical efficacy and safety of baloxavir marboxil tablets in the treatment of influenza A. Methods According to a random sequence generated by computer software, 200 patients with confirmed influenza A were divided into a study group and a control group with 100 cases in each group. Group allocation was concealed using sealed envelopes. The study group was treated with oral administration of baloxavir marboxil tablets, 40 mg once. The control group was given oral oseltamivir capsules, 75 mg twice a day, for five consecutive days. The therapeutic effects, symptom disappearance time and adverse drug reactions of the two groups after 5 days of treatment were compared. Results There was no significant difference in the total effective rate between the two groups (99% vs. 98%, p > 0.05). There was no significant difference in fever subsidence time (1.54 ± 0.66 d vs. 1.67 ± 0.71 d, p > 0.05), cough improvement time (2.26 ± 0.91 d vs. 2.30 ± 0.90 d, p > 0.05) and sore throat improvement time (2.06 ± 0.86 d vs. 2.09 ± 0.83 d, p > 0.05) between the two groups. There was no significant difference in the incidence of adverse drug reactions between the two groups (8% vs. 13%, p > 0.05). Conclusion Baloxavir marboxil tablets can be effectively used in the treatment of patients with influenza A and have a similar efficacy and safety profile as oseltamivir capsules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jichan Shi
- Department of Infection, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangao Jiang
- Department of Infection, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Chen L, Hua J, He X. Bioinformatics analysis identifies a key gene HLA_DPA1 in severe influenza-associated immune infiltration. BMC Genomics 2024; 25:257. [PMID: 38454348 PMCID: PMC10918912 DOI: 10.1186/s12864-024-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation. METHODS The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential expression between severe and non-severe influenza patients. We employed three machine learning algorithms, namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vector Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associations with key genes. RESULTS A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as potential biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correlation between the expression of HLA_DPA1 and lymphocytes. CONCLUSION The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe influenza.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, No 188, Lingshan North Road, Qixia District, Nanjing, 210046, China.
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Fiaschi L, Biba C, Varasi I, Bartolini N, Paletti C, Giammarino F, Saladini F, Zazzi M, Vicenti I. In Vitro Combinatorial Activity of Direct Acting Antivirals and Monoclonal Antibodies against the Ancestral B.1 and BQ.1.1 SARS-CoV-2 Viral Variants. Viruses 2024; 16:168. [PMID: 38399944 PMCID: PMC10892871 DOI: 10.3390/v16020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Combination antiviral therapy may be helpful in the treatment of SARS-CoV-2 infection; however, no clinical trial data are available, and combined use of direct-acting antivirals (DAA) and monoclonal antibodies (mAb) has been reported only anecdotally. To assess the cooperative effects of dual drug combinations in vitro, we used a VERO E6 cell-based in vitro system with the ancestral B.1 or the highly divergent BQ.1.1 virus to test pairwise combinations of the licensed DAA, including nirmatrelvir (NRM), remdesivir (RDV) and the active metabolite of molnupiravir (EIDD-1931) as well the combination of RDV with four licensed mAbs (sotrovimab, bebtelovimab, cilgavimab, tixagevimab; tested only with the susceptible B.1 virus). According to SynergyFinder 3.0 summary and weighted scores, all the combinations had an additive effect. Within DAA/DAA combinations, paired scores with the B.1 and BQ.1.1 variants were comparable. In the post hoc analysis weighting synergy by concentrations, several cases of highly synergistic scores were detected at specific drug concentrations, both for DAA/DAA and for RDV/mAb combinations. This was supported by in vitro confirmation experiments showing a more than a linear shift of a drug-effective concentration (IC50) at increasing concentrations of the companion drug, although the effect was prominent with DAA/DAA combinations and minimal or null with RDV/mAb combinations. These results support the cooperative effects of dual drug combinations in vitro, which should be further investigated in animal models before introduction into the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (L.F.); (C.B.); (I.V.); (N.B.); (C.P.); (F.G.); (F.S.); (M.Z.)
| |
Collapse
|
8
|
Barnard GC, Zhou M, Shen A, Yuk IH, Laird MW. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies. Biotechnol Prog 2024; 40:e3399. [PMID: 37874920 DOI: 10.1002/btpr.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Monoclonal antibodies (mAbs) are effective therapeutic agents against many acute infectious diseases including COVID-19, Ebola, RSV, Clostridium difficile, and Anthrax. mAbs can therefore help combat a future pandemic. Unfortunately, mAb development typically takes years, limiting its potential to save lives during a pandemic. Therefore "pandemic mAb" timelines need to be shortened. One acceleration tool is "deferred cloning" and leverages new Chinese hamster ovary (CHO) technology based on targeted gene integration (TI). CHO pools, instead of CHO clones, can be used for Phase I/II clinical material production. A final CHO clone (producing the mAb with a similar product quality profile and preferably with a higher titer) can then be used for Phase III trials and commercial manufacturing. This substitution reduces timelines by ~3 months. We evaluated our novel CHO TI platform to enable deferred cloning. We created four unique CHO pools expressing three unique mAbs (mAb1, mAb2, and mAb3), and a bispecific mAb (BsAb1). We then performed single-cell cloning for mAb1 and mAb2, identifying three high-expressing clones from each pool. CHO pools and clones were inoculated side-by-side in ambr15 bioreactors. CHO pools yielded mAb titers as high as 10.4 g/L (mAb3) and 7.1 g/L (BsAb1). Subcloning yielded CHO clones expressing higher titers relative to the CHO pools while yielding similar product quality profiles. Finally, we showed that CHO TI pools were stable by performing a 3-month cell aging study. In summary, our CHO TI platform can increase the speed to clinic for a future "pandemic mAb."
Collapse
Affiliation(s)
- Gavin C Barnard
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michelle Zhou
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Inn H Yuk
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| | - Michael W Laird
- Cell Culture and Bioprocess Operations, Genentech, South San Francisco, California, USA
| |
Collapse
|
9
|
Barahimi E, Azad MH, Hesarooeyeh ZG, Hafshejani NH, Defaee S, Seddighi N. Late diagnosis of respiratory syncytial virus and influenza co-infection during coronavirus disease 2019 pandemic: a case report. J Med Case Rep 2023; 17:437. [PMID: 37864237 PMCID: PMC10589917 DOI: 10.1186/s13256-023-04187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV)-induced disease is one of the important causes of flu-like illness in older adults and can cause serious disease in those who are at high-risk medical conditions. During coronavirus disease 2019 (COVID-19) pandemic, because of overlapping symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection with other respiratory infections, diagnosing diseases based on clinical and radiological findings was challenging and could cause misdiagnosis. CASE PRESENTATION An 87-year-old Persian man was admitted to the hospital due to loss of consciousness, respiratory distress, tachypnea, and oliguria. He had previously hospitalized because of cough, fever, loss of appetite, and fatigue. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) test was performed which was negative; however, based on ground glass opacity on his chest computed tomography (CT) scan and being on the outbreak of COVID-19, he fulfilled case definition of COVID-19; therefore, he received protocol's treatment (remdesivir) for COVID-19 and relatively recovered and discharged. In our center, we requested brain and chest CT scans, blood tests, and multiplex PCR. Multiplex PCR revealed co-infection of influenza virus and RSV. Although we had started pneumonia and sepsis treatment, old age, weak immune system and the delay in initiation of right antibiotic and antivirus therapy altogether led him to die. CONCLUSION As a takeaway lesson of this case report, it is necessary to pay attention to viruses that show similar symptoms during future specific virus pandemics, especially in patients with old age and weak immune systems.
Collapse
Affiliation(s)
- Elham Barahimi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassani Azad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Ghaeini Hesarooeyeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | | | - Sahar Defaee
- Internal Medicine Department, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narjes Seddighi
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
10
|
Lora D, García-Reyne A, Lalueza A, Maestro de la Calle G, Ruíz-Ruigómez M, Calderón EJ, Menéndez-Orenga M. Characteristics of clinical trials of influenza and respiratory syncytial virus registered in ClinicalTrials.gov between 2014 and 2021. Front Public Health 2023; 11:1171975. [PMID: 37841720 PMCID: PMC10569070 DOI: 10.3389/fpubh.2023.1171975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
The randomized clinical trial (RCT) is the ideal and mandatory type of study to verify the effect and safety of a drug. Our aim is to examine the fundamental characteristics of interventional clinical trials on influenza and respiratory syncytial virus (RSV). This is a cross-sectional study of RCTs on influenza and RSV in humans between 2014 and 2021 registered in ClinicalTrials.gov. A total of 516 studies were identified: 94 for RSV, 423 for influenza, and 1 for both viruses. There were 51 RCTs of RSV vaccines (54.3%) and 344 (81.3%) for influenza virus vaccines (p < 0.001). Twelve (12.8%) RCTs for RSV were conducted only with women, and 6 were conducted only with pregnant women; for RCTs for influenza, 4 (0.9%) and 3, respectively. For RSV, 29 (31%) of the RCTs were exclusive to people under 5 years of age, and 21 (5%) for influenza virus (p < 0.001). For RSV, there are no RCTs exclusively for people older than or equal to 65 years and no phase 4 trials. RCTs on influenza virus and RSV has focused on vaccines. For the influenza virus, research has been consolidated, and for RSV, research is still in the development phase and directed at children and pregnant women.
Collapse
Affiliation(s)
- David Lora
- Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Spanish Clinical Research Network (SCReN), Madrid, Spain
- Facultad de Estudios Estadísticos, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ana García-Reyne
- Servicio de Medicina Interna, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Antonio Lalueza
- Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Hospital Universitario 12 de Octubre, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Guillermo Maestro de la Calle
- Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Servicio de Medicina Interna, Antimicrobial Stewardship Program, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Ruíz-Ruigómez
- Servicio de Medicina Interna, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Miguel Menéndez-Orenga
- Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Servicio Madrileño de Salud, Centro de Salud La Ventilla, Madrid, Spain
| |
Collapse
|
11
|
Moreno G, Carbonell R, Díaz E, Martín-Loeches I, Restrepo MI, Reyes LF, Solé-Violán J, Bodí M, Canadell L, Guardiola J, Trefler S, Vidaur L, Papiol E, Socias L, Correig E, Marín-Corral J, Rodríguez A. Effectiveness of prolonged versus standard-course of oseltamivir in critically ill patients with severe influenza infection: A multicentre cohort study. J Med Virol 2023; 95:e29010. [PMID: 37537755 DOI: 10.1002/jmv.29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023]
Abstract
The aim of this study is to investigate the effectiveness of prolonged versus standard course oseltamivir treatment among critically ill patients with severe influenza. A retrospective study of a prospectively collected database including adults with influenza infection admitted to 184 intensive care units (ICUs) in Spain from 2009 to 2018. Prolonged oseltamivir was defined if patients received the treatment beyond 5 days, whereas the standard-course group received oseltamivir for 5 days. The primary outcome was all-cause ICU mortality. Propensity score matching (PSM) was constructed, and the outcome was investigated through Cox regression and RCSs. Two thousand three hundred and ninety-seven subjects were included, of whom 1943 (81.1%) received prolonged oseltamivir and 454 (18.9%) received standard treatment. An optimal full matching algorithm was performed by matching 2171 patients, 1750 treated in the prolonged oseltamivir group and 421 controls in the standard oseltamivir group. After PSM, 387 (22.1%) patients in the prolonged oseltamivir and 119 (28.3%) patients in the standard group died (p = 0.009). After adjusting confounding factors, prolonged oseltamivir significantly reduced ICU mortality (odds ratio [OR]: 0.53, 95% confidence interval [CI]: 0.40-0.69). Prolonged oseltamivir may have protective effects on survival at Day 10 compared with a standard treatment course. Sensitivity analysis confirmed these findings. Compared with standard treatment, prolonged oseltamivir was associated with reduced ICU mortality in critically ill patients with severe influenza. Clinicians should consider extending the oseltamivir treatment duration to 10 days, particularly in higher-risk groups of prolonged viral shedding. Further randomized controlled trials are warranted to confirm these findings.
Collapse
Affiliation(s)
- Gerard Moreno
- Critical Care Department, Institut d'Investigació Sanitaria Pere Virgili (IISPV)/Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Raquel Carbonell
- Critical Care Department, Institut d'Investigació Sanitaria Pere Virgili (IISPV)/Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Emili Díaz
- Critical Care Department, Universitat Autónoma de Barcelona (UAB), Hospital Parc Taulí, Sabadell, Spain
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Marcos I Restrepo
- Department of Medicine, South Texas Veterans Health Care System and University of Texas Health, San Antonio, Texas, USA
| | - Luis F Reyes
- Infectious Diseases Department, Universidad de La Sabana, Chía, Colombia
| | - Jordi Solé-Violán
- Critical Care Department, Universidad Fernando Pessoa Canarias, Hospital Universitario Doctor Negrín, Gran Canaria, Spain
| | - María Bodí
- Critical Care Department, Institut d'Investigació Sanitaria Pere Virgili (IISPV)/Hospital Universitari Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV)/Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Tarragona, Spain
| | - Laura Canadell
- Pharmacology Department, Universitat Rovira I Virgili (URV)/Institut d'Investigació Sanitaria Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Juan Guardiola
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Louisville and Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Sandra Trefler
- Critical Care Department, Institut d'Investigació Sanitaria Pere Virgili (IISPV)/Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Loreto Vidaur
- Critical Care Deptartment, Instituto de Investigación Sanitaria Biodonostia, Hospital Universitario de Donostia, San Sebastián, Spain
| | - Elisabeth Papiol
- Critical Care Department, Hospital Univesitari Vall d'Hebrón, Barcelona, Spain
| | - Lorenzo Socias
- Critical Care Department, Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - Eudald Correig
- Department of Biostatistics, Universitat Rovira i Virgili (URV), Reus, Spain
| | - Judith Marín-Corral
- Critical Care Department, Research Group in Critical Disorders (GREPAC), IMIM, Hospital Del Mar, Barcelona, Spain
| | - Alejandro Rodríguez
- Critical Care Department, Institut d'Investigació Sanitaria Pere Virgili (IISPV)/Hospital Universitari Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili (URV)/Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Tarragona, Spain
| |
Collapse
|
12
|
Ganter B, Zickler M, Huchting J, Winkler M, Lüttjohann A, Meier C, Gabriel G, Beck S. T-705-Derived Prodrugs Show High Antiviral Efficacies against a Broad Range of Influenza A Viruses with Synergistic Effects When Combined with Oseltamivir. Pharmaceutics 2023; 15:1732. [PMID: 37376180 DOI: 10.3390/pharmaceutics15061732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging influenza A viruses (IAV) bear the potential to cause pandemics with unpredictable consequences for global human health. In particular, the WHO has declared avian H5 and H7 subtypes as high-risk candidates, and continuous surveillance of these viruses as well as the development of novel, broadly acting antivirals, are key for pandemic preparedness. In this study, we sought to design T-705 (Favipiravir) related inhibitors that target the RNA-dependent RNA polymerase and evaluate their antiviral efficacies against a broad range of IAVs. Therefore, we synthesized a library of derivatives of T-705 ribonucleoside analogues (called T-1106 pronucleotides) and tested their ability to inhibit both seasonal and highly pathogenic avian influenza viruses in vitro. We further showed that diphosphate (DP) prodrugs of T-1106 are potent inhibitors of H1N1, H3N2, H5N1, and H7N9 IAV replication. Importantly, in comparison to T-705, these DP derivatives achieved 5- to 10-fold higher antiviral activity and were non-cytotoxic at the therapeutically active concentrations. Moreover, our lead DP prodrug candidate showed drug synergy with the neuraminidase inhibitor oseltamivir, thus opening up another avenue for combinational antiviral therapy against IAV infections. Our findings may serve as a basis for further pre-clinical development of T-1106 prodrugs as an effective countermeasure against emerging IAVs with pandemic potential.
Collapse
Affiliation(s)
- Benedikt Ganter
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Johanna Huchting
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| | - Matthias Winkler
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
| | - Anna Lüttjohann
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, Hamburg University, 20146 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
13
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
14
|
Jones JC, Yen HL, Adams P, Armstrong K, Govorkova EA. Influenza antivirals and their role in pandemic preparedness. Antiviral Res 2023; 210:105499. [PMID: 36567025 PMCID: PMC9852030 DOI: 10.1016/j.antiviral.2022.105499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Effective antivirals provide crucial benefits during the early phase of an influenza pandemic, when vaccines are still being developed and manufactured. Currently, two classes of viral protein-targeting drugs, neuraminidase inhibitors and polymerase inhibitors, are approved for influenza treatment and post-exposure prophylaxis. Resistance to both classes has been documented, highlighting the need to develop novel antiviral options that may include both viral and host-targeted inhibitors. Such efforts will form the basis of management of seasonal influenza infections and of strategic planning for future influenza pandemics. This review focuses on the two classes of approved antivirals, their drawbacks, and ongoing work to characterize novel agents or combination therapy approaches to address these shortcomings. The importance of these topics in the ongoing process of influenza pandemic planning is also discussed.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peter Adams
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
15
|
Agrawal A, Chanana P, Yadav V, Bhutani V, Subbarao N, Srivastava A. Vitamin derivatives as potential drugs for Influenza Hemagglutinin. J Biomol Struct Dyn 2023; 41:11781-11795. [PMID: 36629034 DOI: 10.1080/07391102.2022.2163698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
The objective of the study was to identify potential inhibitors of Influenza surface Hemagglutinin (HA), which plays key role in the entry and replication of Influenza virus into the host cell. As ligands, seven vitamins and their derivatives were selected after initial screening based on their metabolizable capacity with no reported side effects, for in silico studies. Docking, and Post docking analysis (X Score and Ligplot+) were performed against nine Influenza HA targets for the vitamins and its derivatives. 'Vitamin Derivatives' with top docking score were further analysed by MD Simulations and free energy was calculated using MMGBSA module. FMNNa and FMNCa displayed high binding free energy with Influenza HA, thereby exhibiting potential as HA inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananyaa Agrawal
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Pratibha Chanana
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Vikas Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vilakshan Bhutani
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aradhana Srivastava
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
16
|
Chen L, Hua J, He X. Co-expression network analysis identifies potential candidate hub genes in severe influenza patients needing invasive mechanical ventilation. BMC Genomics 2022; 23:703. [PMID: 36243706 PMCID: PMC9569050 DOI: 10.1186/s12864-022-08915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a contagious disease that affects people of all ages and is linked to considerable mortality during epidemics and occasional outbreaks. Moreover, effective immunological biomarkers are needed for elucidating aetiology and preventing and treating severe influenza. Herein, we aimed to evaluate the key genes linked with the disease severity in influenza patients needing invasive mechanical ventilation (IMV). Three gene microarray data sets (GSE101702, GSE21802, and GSE111368) from blood samples of influenza patients were made available by the Gene Expression Omnibus (GEO) database. The GSE101702 and GSE21802 data sets were combined to create the training set. Hub indicators for IMV patients with severe influenza were determined using differential expression analysis and Weighted correlation network analysis (WGCNA) from the training set. The receiver operating characteristic curve (ROC) was also used to evaluate the hub genes from the test set's diagnostic accuracy. Different immune cells' infiltration levels in the expression profile and their correlation with hub gene markers were examined using single-sample gene set enrichment analysis (ssGSEA). RESULTS In the present study, we evaluated a total of 447 differential genes. WGCNA identified eight co-expression modules, with the red module having the strongest correlation with IMV patients. Differential genes were combined to obtain 3 hub genes (HLA-DPA1, HLA-DRB3, and CECR1). The identified genes were investigated as potential indicators for patients with severe influenza who required IMV using the least absolute shrinkage and selection operator (LASSO) approach. The ROC showed the diagnostic value of the three hub genes in determining the severity of influenza. Using ssGSEA, it has been revealed that the expression of key genes was negatively correlated with neutrophil activation and positively associated with adaptive cellular immune response. CONCLUSION We evaluated three novel hub genes that could be linked to the immunopathological mechanism of severe influenza patients who require IMV treatment and could be used as potential biomarkers for severe influenza prevention and treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Infectious Diseases, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jie Hua
- Department of Gastroenterology, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Nanjing, China
| | - Xiaopu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital With Nanjing Medical University, No.300 Guangzhou Road, Nanjing city, 210029, Jiangsu Province, China.
| |
Collapse
|
17
|
Smyk JM, Szydłowska N, Szulc W, Majewska A. Evolution of Influenza Viruses-Drug Resistance, Treatment Options, and Prospects. Int J Mol Sci 2022; 23:12244. [PMID: 36293099 PMCID: PMC9602850 DOI: 10.3390/ijms232012244] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Viral evolution refers to the genetic changes that a virus accumulates during its lifetime which can arise from adaptations in response to environmental changes or the immune response of the host. Influenza A virus is one of the most rapidly evolving microorganisms. Its genetic instability may lead to large changes in its biological properties, including changes in virulence, adaptation to new hosts, and even the emergence of infectious diseases with a previously unknown clinical course. Genetic variability makes it difficult to implement effective prophylactic programs, such as vaccinations, and may be responsible for resistance to antiviral drugs. The aim of the review was to describe the consequences of the variability of influenza viruses, mutations, and recombination, which allow viruses to overcome species barriers, causing epidemics and pandemics. Another consequence of influenza virus evolution is the risk of the resistance to antiviral drugs. Thus far, one class of drugs, M2 protein inhibitors, has been excluded from use because of mutations in strains isolated in many regions of the world from humans and animals. Therefore, the effectiveness of anti-influenza drugs should be continuously monitored in reference centers representing particular regions of the world as a part of epidemiological surveillance.
Collapse
Affiliation(s)
| | | | | | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|