1
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
2
|
Awad MM, Suraweera CD, Vidor CJ, Ye-Lin AY, Williams GC, Mileto SJ, Barlow CK, McGowan S, Lyras D. A Clostridioides difficile endolysin modulates toxin secretion without cell lysis. Commun Biol 2024; 7:1044. [PMID: 39179651 PMCID: PMC11344133 DOI: 10.1038/s42003-024-06730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
The Clostridia produce and secrete Large Clostridial Glucosylating Toxins (LCGTs) responsible for disease symptoms, but the secretion mechanism is largely unknown. Recently, a holin-like protein was shown to be essential for toxin secretion. Holins, typically bacteriophage-specific proteins, are part of the holin-endo(lysin) system that releases phage progeny. To determine if the clostridia also use a lysin, we investigated two conserved putative lysins, M7404_01910 and M7404_02200, in the release of the LCGTs TcdA and TcdB from a Clostridioides difficile ribotype 027 strain, M7404. Sequence analysis and structural modelling indicates that both proteins are related to N-acetylmuramoyl-l-alanine amidases, similar to CD27L, a lysin from the C. difficile phage ΦCD27. Disruption of these genes reveal that only M7404_02200 contributes to toxin secretion and does so in a non-lytic fashion. Peptidoglycan hydrolysis assays show that recombinant M7404_02200 is an active peptidoglycan amidase, confirming its role in TcdA and TcdB secretion in C. difficile M7404.
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Chathura D Suraweera
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Callum J Vidor
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Auberon Y Ye-Lin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Galain C Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Steven J Mileto
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Christopher K Barlow
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
- Monash Proteomics & Metabolomics Platform, Monash University, Clayton, 3800, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
3
|
Apostol AJ, Bragagnolo NJ, Rodriguez CS, Audette GF. Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system. Curr Res Struct Biol 2024; 8:100156. [PMID: 39131116 PMCID: PMC11315126 DOI: 10.1016/j.crstbi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.
Collapse
Affiliation(s)
- Arnold J. Apostol
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Nicholas J. Bragagnolo
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Christina S. Rodriguez
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| |
Collapse
|
4
|
Nicholson KR, Cronin RM, Prest RJ, Menon AR, Yang Y, Jennisch MK, Champion MM, Tobin DM, Champion PA. The antagonistic transcription factors, EspM and EspN, regulate the ESX-1 secretion system in M. marinum. mBio 2024; 15:e0335723. [PMID: 38445877 PMCID: PMC11005418 DOI: 10.1128/mbio.03357-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Bacterial pathogens use protein secretion systems to transport virulence factors and regulate gene expression. Among pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum, the ESAT-6 system 1 (ESX-1) secretion is crucial for host interaction. Secretion of protein substrates by the ESX-1 secretion system disrupts phagosomes, allowing mycobacteria cytoplasmic access during macrophage infections. Deletion or mutation of the ESX-1 system attenuates mycobacterial pathogens. Pathogenic mycobacteria respond to the presence or absence of the ESX-1 system in the cytoplasmic membrane by altering transcription. Under laboratory conditions, the EspM repressor and WhiB6 activator control transcription of specific ESX-1-responsive genes, including the ESX-1 substrate genes. However, deleting the espM or whiB6 gene does not phenocopy the deletion of the ESX-1 substrate genes during macrophage infection by M. marinum. In this study, we identified EspN, a critical transcription factor whose activity is masked by the EspM repressor under laboratory conditions. In the absence of EspM, EspN activates transcription of whiB6 and ESX-1 genes during both laboratory growth and macrophage infection. EspN is also independently required for M. marinum growth within and cytolysis of macrophages, similar to the ESX-1 genes, and for disease burden in a zebrafish larval model of infection. These findings suggest that EspN and EspM coordinate to counterbalance the regulation of the ESX-1 system and support mycobacterial pathogenesis.IMPORTANCEPathogenic mycobacteria, which are responsible for tuberculosis and other long-term diseases, use the ESX-1 system to transport proteins that control the host response to infection and promote bacterial survival. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that likely controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel M. Cronin
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca J. Prest
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Aruna R. Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yuwei Yang
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Madeleine K. Jennisch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Matthew M. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A. Champion
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Ilyas M, Purkait D, Atmakuri K. Genomic islands and their role in fitness traits of two key sepsis-causing bacterial pathogens. Brief Funct Genomics 2024; 23:55-68. [PMID: 36528816 DOI: 10.1093/bfgp/elac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 01/21/2024] Open
Abstract
To survive and establish a niche for themselves, bacteria constantly evolve. Toward that, they not only insert point mutations and promote illegitimate recombinations within their genomes but also insert pieces of 'foreign' deoxyribonucleic acid, which are commonly referred to as 'genomic islands' (GEIs). The GEIs come in several forms, structures and types, often providing a fitness advantage to the harboring bacterium. In pathogenic bacteria, some GEIs may enhance virulence, thus altering disease burden, morbidity and mortality. Hence, delineating (i) the GEIs framework, (ii) their encoded functions, (iii) the triggers that help them move, (iv) the mechanisms they exploit to move among bacteria and (v) identification of their natural reservoirs will aid in superior tackling of several bacterial diseases, including sepsis. Given the vast array of comparative genomics data, in this short review, we provide an overview of the GEIs, their types and the compositions therein, especially highlighting GEIs harbored by two important pathogens, viz. Acinetobacter baumannii and Klebsiella pneumoniae, which prominently trigger sepsis in low- and middle-income countries. Our efforts help shed some light on the challenges these pathogens pose when equipped with GEIs. We hope that this review will provoke intense research into understanding GEIs, the cues that drive their mobility across bacteria and the ways and means to prevent their transfer, especially across pathogenic bacteria.
Collapse
Affiliation(s)
- Mohd Ilyas
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Dyuti Purkait
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Krishnamohan Atmakuri
- Bacterial Pathogenesis Lab, Infection and Immunity Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| |
Collapse
|
6
|
The EspN transcription factor is an infection-dependent regulator of the ESX-1 system in M. marinum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528779. [PMID: 36824794 PMCID: PMC9948972 DOI: 10.1101/2023.02.15.528779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Bacterial pathogens use protein secretion systems to translocate virulence factors into the host and to control bacterial gene expression. The ESX-1 (ESAT-6 system 1) secretion system facilitates disruption of the macrophage phagosome during infection, enabling access to the cytoplasm, and regulates widespread gene expression in the mycobacterial cell. The transcription factors contributing to the ESX-1 transcriptional network during mycobacterial infection are not known. We showed that the EspM and WhiB6 transcription factors regulate the ESX-1 transcriptional network in vitro but are dispensable for macrophage infection by Mycobacterium marinum . In this study, we used our understanding of the ESX-1 system to identify EspN, a critical transcription factor that controls expression of the ESX-1 genes during infection, but whose effect is not detectable under standard laboratory growth conditions. Under laboratory conditions, EspN activity is masked by the EspM repressor. In the absence of EspM, we found that EspN is required for ESX-1 function because it activates expression of the whiB6 transcription factor gene, and specific ESX-1 substrate and secretory component genes. Unlike the other transcription factors that regulate ESX-1, EspN is required for M. marinum growth within and cytolysis of macrophages, and for disease burden in a zebrafish larval model of infection. These findings demonstrate that EspN is an infection-dependent regulator of the ESX-1 transcriptional network, which is essential for mycobacterial pathogenesis. Moreover, our findings suggest that ESX-1 expression is controlled by a genetic switch that responds to host specific signals. Importance Pathogenic mycobacteria cause acute and long-term diseases, including human tuberculosis. The ESX-1 system transports proteins that control the host response to infection and promotes bacterial survival. Although ESX-1 transports proteins, it also controls gene expression in the bacteria. In this study, we identify an undescribed transcription factor that controls the expression of ESX-1 genes, and is required for both macrophage and animal infection. However, this transcription factor is not the primary regulator of ESX-1 genes under standard laboratory conditions. These findings identify a critical transcription factor that controls expression of a major virulence pathway during infection, but whose effect is not detectable with standard laboratory strains and growth conditions.
Collapse
|
7
|
St. Louis BM, Quagliato SM, Lee PC. Bacterial effector kinases and strategies to identify their target host substrates. Front Microbiol 2023; 14:1113021. [PMID: 36846793 PMCID: PMC9950578 DOI: 10.3389/fmicb.2023.1113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Post-translational modifications (PTMs) are critical in regulating protein function by altering chemical characteristics of proteins. Phosphorylation is an integral PTM, catalyzed by kinases and reversibly removed by phosphatases, that modulates many cellular processes in response to stimuli in all living organisms. Consequently, bacterial pathogens have evolved to secrete effectors capable of manipulating host phosphorylation pathways as a common infection strategy. Given the importance of protein phosphorylation in infection, recent advances in sequence and structural homology search have significantly expanded the discovery of a multitude of bacterial effectors with kinase activity in pathogenic bacteria. Although challenges exist due to complexity of phosphorylation networks in host cells and transient interactions between kinases and substrates, approaches are continuously being developed and applied to identify bacterial effector kinases and their host substrates. In this review, we illustrate the importance of exploiting phosphorylation in host cells by bacterial pathogens via the action of effector kinases and how these effector kinases contribute to virulence through the manipulation of diverse host signaling pathways. We also highlight recent developments in the identification of bacterial effector kinases and a variety of techniques to characterize kinase-substrate interactions in host cells. Identification of host substrates provides new insights for regulation of host signaling during microbial infection and may serve as foundation for developing interventions to treat infection by blocking the activity of secreted effector kinases.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | | |
Collapse
|
8
|
Gijsbers A, Eymery M, Gao Y, Menart I, Vinciauskaite V, Siliqi D, Peters PJ, McCarthy A, Ravelli RBG. The crystal structure of the EspB-EspK virulence factor-chaperone complex suggests an additional type VII secretion mechanism in Mycobacterium tuberculosis. J Biol Chem 2022; 299:102761. [PMID: 36463964 PMCID: PMC9811218 DOI: 10.1016/j.jbc.2022.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Pathogenic species from the Mycobacterium genus are responsible for a number of adverse health conditions in humans and animals that threaten health security and the economy worldwide. Mycobacteria have up to five specialized secretion systems (ESX-1 to ESX-5) that transport virulence factors across their complex cell envelope to facilitate manipulation of their environment. In pathogenic species, these virulence factors influence the immune system's response and are responsible for membrane disruption and contributing to cell death. While structural details of these secretion systems have been recently described, gaps still remain in the structural understanding of the secretion mechanisms of most substrates. Here, we describe the crystal structure of Mycobacterium tuberculosis ESX-1 secretion-associated substrate EspB bound to its chaperone EspK. We found that EspB interacts with the C-terminal domain of EspK through its helical tip. Furthermore, cryogenic electron microscopy, size exclusion chromatography analysis, and small-angle X-ray scattering experiments show that EspK keeps EspB in its secretion-competent monomeric form and prevents its oligomerization. The structure presented in this study suggests an additional secretion mechanism in ESX-1, analogous to the chaperoning of proline-glutamate (PE)-proline-proline-glutamate (PPE) proteins by EspG, where EspK facilitates the secretion of EspB in Mycobacterium species.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Isabella Menart
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands
| | | | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|