1
|
Khelifa AS, Bhaskaran M, Boissavy T, Mouveaux T, Silva TA, Chhuon C, Attias M, Guerrera IC, De Souza W, Dauvillee D, Roger E, Gissot M. PP1 phosphatase controls both daughter cell formation and amylopectin levels in Toxoplasma gondii. PLoS Biol 2024; 22:e3002791. [PMID: 39255306 DOI: 10.1371/journal.pbio.3002791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite Toxoplasma gondii. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells' inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.
Collapse
Affiliation(s)
- Asma Sarah Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Maanasa Bhaskaran
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tom Boissavy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Thomas Mouveaux
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Tatiana Araujo Silva
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cerina Chhuon
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Marcia Attias
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS, UMS3633, Paris, France
| | - Wanderley De Souza
- Laboratory of Celullar Ultrastructure Hertha Meyer, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Dauvillee
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576, Lille, France
| | - Emmanuel Roger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Wang F, Xue Y, Pei Y, Yin M, Sun Z, Zhou Z, Liu J, Liu Q. Construction of luciferase-expressing Neospora caninum and drug screening. Parasit Vectors 2024; 17:118. [PMID: 38459572 PMCID: PMC10921786 DOI: 10.1186/s13071-024-06195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Neospora caninum is an apicomplexan parasite that is particularly responsible for abortions in cattle and neuromuscular disease in dogs. Due to the limited effectiveness of currently available drugs, there is an urgent need for new therapeutic approaches to control neosporosis. Luciferase-based assays are potentially powerful tools in the search for antiprotozoal compounds, permitting the development of faster and more automated assays. The aim of this study was to construct a luciferase-expressing N. caninum and evaluate anti-N. caninum drugs. METHODS Luciferase-expressing N. caninum (Nc1-Luc) was constructed using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9). After testing the luciferase expression and phenotype of the Nc1-Luc strains, the drug sensitivity of Nc1-Luc strains was determined by treating them with known positive or negative drugs and calculating the half-maximal inhibitory concentration (IC50). The selective pan-rapidly accelerated fibrosarcoma (pan-RAF) inhibitor TAK-632 was then evaluated for anti-N. caninum effects using Nc1-Luc by luciferase activity reduction assay and other in vitro and in vivo studies. RESULTS The phenotypes and drug sensitivity of Nc1-Luc strains were consistent with those of the parental strains Nc1, and Nc1-Luc strains can be used to determine the IC50 for anti-N. caninum drugs. Using the Nc1-Luc strains, TAK-632 showed promising activity against N. caninum, with an IC50 of 0.6131 μM and a selectivity index (SI) of 62.53. In vitro studies demonstrated that TAK-632 inhibited the invasion, proliferation, and division of N. caninum tachyzoites. In vivo studies showed that TAK-632 attenuated the virulence of N. caninum in mice and significantly reduced the parasite burden in the brain. CONCLUSIONS In conclusion, a luciferase-expressing N. caninum strain was successfully constructed, which provides an effective tool for drug screening and related research on N. caninum. In addition, TAK-632 was found to inhibit the growth of N. caninum, which could be considered as a candidate lead compound for new therapeutics for neosporosis.
Collapse
Affiliation(s)
- Fei Wang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yangfei Xue
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yanqun Pei
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meng Yin
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhepeng Sun
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zihui Zhou
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Deng B, Vanagas L, Alonso AM, Angel SO. Proteomics Applications in Toxoplasma gondii: Unveiling the Host-Parasite Interactions and Therapeutic Target Discovery. Pathogens 2023; 13:33. [PMID: 38251340 PMCID: PMC10821451 DOI: 10.3390/pathogens13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Toxoplasma gondii, a protozoan parasite with the ability to infect various warm-blooded vertebrates, including humans, is the causative agent of toxoplasmosis. This infection poses significant risks, leading to severe complications in immunocompromised individuals and potentially affecting the fetus through congenital transmission. A comprehensive understanding of the intricate molecular interactions between T. gondii and its host is pivotal for the development of effective therapeutic strategies. This review emphasizes the crucial role of proteomics in T. gondii research, with a specific focus on host-parasite interactions, post-translational modifications (PTMs), PTM crosstalk, and ongoing efforts in drug discovery. Additionally, we provide an overview of recent advancements in proteomics techniques, encompassing interactome sample preparation methods such as BioID (BirA*-mediated proximity-dependent biotin identification), APEX (ascorbate peroxidase-mediated proximity labeling), and Y2H (yeast two hybrid), as well as various proteomics approaches, including single-cell analysis, DIA (data-independent acquisition), targeted, top-down, and plasma proteomics. Furthermore, we discuss bioinformatics and the integration of proteomics with other omics technologies, highlighting its potential in unraveling the intricate mechanisms of T. gondii pathogenesis and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Deng
- Department of Biology and VBRN Proteomics Facility, University of Vermont, Burlington, VT 05405, USA
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Andres M. Alonso
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús 7130, Provincia de Buenos Aires, Argentina; (L.V.); (S.O.A.); (A.M.A.)
- Escuela de Bio y Nanotecnologías (UNSAM), 25 de Mayo y Francia. C.P., San Martín 1650, Provincia de Buenos Aires, Argentina
| |
Collapse
|