1
|
Amarillas L, Padilla-Lafarga F, León Chan RG, Padilla J, Lugo-Melchor Y, López Avendaño JE, Lightbourn-Rojas L, Estrada-Acosta M. Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions. Viruses 2024; 16:1711. [PMID: 39599826 PMCID: PMC11598880 DOI: 10.3390/v16111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. AIM This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. METHODOLOGY An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. RESULTS Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions' induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. CONCLUSION This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella.
Collapse
Affiliation(s)
- Luis Amarillas
- Instituto de Investigación Lightbourn, Jimenez 33981, Mexico; (L.A.); (R.G.L.C.)
- Facultad de Agronomía de la Universidad Autónoma de Sinaloa, Culiacán 80000, Mexico
| | | | | | - Jorge Padilla
- Facultad de Agronomía de la Universidad Autónoma de Sinaloa, Culiacán 80000, Mexico
| | - Yadira Lugo-Melchor
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico
| | | | | | - Mitzi Estrada-Acosta
- Facultad de Agronomía de la Universidad Autónoma de Sinaloa, Culiacán 80000, Mexico
| |
Collapse
|
2
|
Luo L, Wang Z, Tong X, Xiong T, Chen M, Liu X, Peng C, Sun X. LncRNA MALAT1 facilitates BM-MSCs differentiation into endothelial cells and ameliorates erectile dysfunction via the miR-206/CDC42/PAK1/paxillin signalling axis. Reprod Biol Endocrinol 2024; 22:74. [PMID: 38918809 PMCID: PMC11197369 DOI: 10.1186/s12958-024-01240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Erectile dysfunction (ED) is a common male sexual dysfunction, with an increasing incidence, and the current treatment is often ineffective. METHODS Vascular endothelial growth factor (VEGFA) was used to treat bone marrow-derived mesenchymal stem cells (BM-MSCs), and their cell migration rates were determined by Transwell assays. The expression of the von Willebrand Factor (vWF)VE-cadherin, and endothelial nitric oxide synthase(eNOS) endothelial markers was determined by qRT‒PCR and Western blot analyses. The MALAT1-induced differentiation of BM-MCs to ECs via the CDC42/PAK1/paxillin pathway was explored by transfecting VEGFA-induced BM-MSC with si-MALAT1 and overexpressing CDC42 and PAK1. The binding capacity between CDC42, PAK1, and paxillin in VEGFA-treated and non-VEGFA-treated BM-MSCs was examined by protein immunoprecipitation. MiR-206 was overexpressed in VEGFA-induced BM-MSC, and the binding sites of MALAT1, miR-206, and CDC42 were identified using a luciferase assay. Sixty male Sprague‒Dawley rats were divided into six groups (n = 10/group). DMED modelling was demonstrated by APO experiments and was assessed by measuring blood glucose levels. Erectile function was assessed by measuring the intracavernosa pressure (ICP) and mean arterial pressure (MAP). Penile erectile tissue was analysed by qRT‒PCR, Western blot analysis, and immunohistochemical staining. RESULTS MALAT1 under VEGFA treatment conditions regulates the differentiation of BM-MSCs into ECs by modulating the CDC42/PAK1/paxillin axis. In vitro experiments demonstrated that interference with CDC42 and MALAT1 expression inhibited the differentiation of BM-MSCs to ECs. CDC42 binds to PAK1, and PAK1 binds to paxillin. In addition, CDC42 in the VEGFA group had a greater ability to bind to PAK1, whereas PAK1 in the VEGFA group had a greater ability to bind to paxillin. Overexpression of miR-206 in VEGFA-induced BM-MSCs demonstrated that MALAT1 competes with the CDC42 3'-UTR for binding to miR-206, which in turn is involved in the differentiation of BM-MSCs to ECs. Compared to the DMED model group, the ICP/MAP ratio was significantly greater in the three BM-MSCs treatment groups. CONCLUSIONS MALAT1 facilitates BM-MSC differentiation into ECs by regulating the miR-206/CDC42/PAK1/paxillin axis to improve ED. The present findings revealed the vital role of MALAT1 in the repair of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSC-mediated repair of DMED.
Collapse
Affiliation(s)
- Longhua Luo
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006, China
| | - Zixin Wang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006, China
| | - Xuxian Tong
- Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang City, 330006, Jiangxi Province, China
| | - Tenxian Xiong
- Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang City, 330006, Jiangxi Province, China
| | - Minggen Chen
- Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang City, 330006, Jiangxi Province, China
| | - Xiang Liu
- Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang City, 330006, Jiangxi Province, China
| | - Cong Peng
- Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang City, 330006, Jiangxi Province, China
| | - Xiang Sun
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006, China.
| |
Collapse
|
3
|
Read CB, Ali AN, Stephenson DJ, Macknight HP, Maus KD, Cockburn CL, Kim M, Xie X, Carlyon JA, Chalfant CE. Ceramide-1-phosphate is a regulator of Golgi structure and is co-opted by the obligate intracellular bacterial pathogen Anaplasma phagocytophilum. mBio 2024; 15:e0029924. [PMID: 38415594 PMCID: PMC11005342 DOI: 10.1128/mbio.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Many intracellular pathogens structurally disrupt the Golgi apparatus as an evolutionarily conserved promicrobial strategy. Yet, the host factors and signaling processes involved are often poorly understood, particularly for Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We found that A. phagocytophilum elevated cellular levels of the bioactive sphingolipid, ceramide-1-phosphate (C1P), to promote Golgi fragmentation that enables bacterial proliferation, conversion from its non-infectious to infectious form, and productive infection. A. phagocytophilum poorly infected mice deficient in ceramide kinase, the Golgi-localized enzyme responsible for C1P biosynthesis. C1P regulated Golgi morphology via activation of a PKCα/Cdc42/JNK signaling axis that culminates in phosphorylation of Golgi structural proteins, GRASP55 and GRASP65. siRNA-mediated depletion of Cdc42 blocked A. phagocytophilum from altering Golgi morphology, which impaired anterograde trafficking of trans-Golgi vesicles into and maturation of the pathogen-occupied vacuole. Cells overexpressing phosphorylation-resistant versions of GRASP55 and GRASP65 presented with suppressed C1P- and A. phagocytophilum-induced Golgi fragmentation and poorly supported infection by the bacterium. By studying A. phagocytophilum, we identify C1P as a regulator of Golgi structure and a host factor that is relevant to disease progression associated with Golgi fragmentation.IMPORTANCECeramide-1-phosphate (C1P), a bioactive sphingolipid that regulates diverse processes vital to mammalian physiology, is linked to disease states such as cancer, inflammation, and wound healing. By studying the obligate intracellular bacterium Anaplasma phagocytophilum, we discovered that C1P is a major regulator of Golgi morphology. A. phagocytophilum elevated C1P levels to induce signaling events that promote Golgi fragmentation and increase vesicular traffic into the pathogen-occupied vacuole that the bacterium parasitizes. As several intracellular microbial pathogens destabilize the Golgi to drive their infection cycles and changes in Golgi morphology is also linked to cancer and neurodegenerative disorder progression, this study identifies C1P as a potential broad-spectrum therapeutic target for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Curtis B. Read
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Anika N. Ali
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Daniel J. Stephenson
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - H. Patrick Macknight
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth D. Maus
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Chelsea L. Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Xiujie Xie
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Charles E. Chalfant
- Division of Hematology & Oncology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, Virginia, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, Virginia, USA
| |
Collapse
|
4
|
Chen YQ, Xue MD, Li JL, Huo D, Ding HM, Ma Y. Uncovering the Importance of Ligand Mobility on Cellular Uptake of Nanoparticles: Insights from Experimental, Computational, and Theoretical Investigations. ACS NANO 2024; 18:6463-6476. [PMID: 38346263 DOI: 10.1021/acsnano.3c11982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The cellular uptake of nanoparticles (NPs) by biological cells is an important and fundamental process in drug delivery. Previous studies reveal that the physicochemical properties of nanoparticles as well as those of functionalized ligands can both critically affect the uptake behaviors. However, the effect of the conjugation strategy (i.e., the "bond" between the ligand and the NP) on the cellular uptake is overlooked and remains largely elusive. Here, by taking the broadly employed gold nanoparticle as an example, we comprehensively assessed the relationship between the conjugation strategy and uptake behaviors by introducing three ligands with the same functional terminal but different anchoring sites. As revealed by in vitro cell experiments and multiscale molecular simulations, the uptake efficiency of gold NPs was positively correlated with the strength of the "bond" and more specifically the ligand mobility on the NP surface. Moreover, we validated the results presented above by proposing a thermodynamic theory for the wrapping of NPs with mobile ligands. Further, we also showed that the endocytic pathway of NPs was highly dependent on ligand mobility. Overall, this study uncovered a vital role of conjugation strategy in the cellular uptake and may provide useful guidelines for tailoring the biobehaviors of nanoparticles.
Collapse
Affiliation(s)
- Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Meng-Die Xue
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Wang S, Xu B, Zhang Y, Chen G, Zhao P, Gao Q, Yuan L. The role of intestinal flora on tumorigenesis, progression, and the efficacy of PD-1/PD-L1 antibodies in colorectal cancer. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0376. [PMID: 38148328 PMCID: PMC10875280 DOI: 10.20892/j.issn.2095-3941.2023.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Intestinal flora affects the maturation of the host immune system, serves as a biomarker and efficacy predictor in the immunotherapy of several cancers, and has an important role in the development of colorectal cancer (CRC). Anti-PD-1/PD-L1 antibodies have shown satisfactory results in MSI-H/dMMR CRC but performed poorly in patients with MSS/pMMR CRC. In recent years an increasing number of studies have shown that intestinal flora has an important impact on anti-PD-1/PD-L1 antibody efficacy in CRC patients. Preclinical and clinical evidence have suggested that anti-PD-1/PD-L1 antibody efficacy can be improved by altering the composition of the intestinal flora in CRC. Herein, we summarize the studies related to the influence of intestinal flora on anti-PD-1/PD-L1 antibody efficacy in CRC and discuss the potential underlying mechanism(s). We have focused on the impact of the intestinal flora on the efficacy and safety of anti-PD-1/PD-L1 antibodies in CRC and how to better utilize the intestinal flora as an adjuvant to improve the efficacy of anti-PD-1/PD-L1 antibodies. In addition, we have provided a basis for the potential of the intestinal flora as a new treatment modality and indicator for determining patient prognosis.
Collapse
Affiliation(s)
- Sen Wang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Benling Xu
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yangyang Zhang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Guangyu Chen
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Peng Zhao
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Quanli Gao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Long Yuan
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
6
|
Jain S, Rana M. From the discovery of helminths to the discovery of their carcinogenic potential. Parasitol Res 2023; 123:47. [PMID: 38095695 DOI: 10.1007/s00436-023-08022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Cancer involves a major aberration in the normal behaviour of cells, making them divide continuously, which interferes with the normal physiology of the body. The link between helminths and their cancer-inducing potential has been proposed in the last century. The exact pathway is still not clear but chronic inflammation in response to the deposited eggs, immune response against soluble egg antigens, and co-infection with a third party (a bacteria, a virus, or infection leading to a change in microbiome) seems to be the reasons for cancer induction. This review looks into the historical outlook on helminths along with their epidemiology, morphology, and life cycle. It then focuses on providing correlations between helminth infection and molecular mechanism of carcinogenesis by elaborating upon epidemiological, clinical, and surgical studies. While the cancer-inducing potential has been convincingly established only for a few helminths and studies point out towards possible cancer-inducing ability of the rest of the helminths elucidated in this work, however, more insights into the immunobiology of helminths as well as infected patients are required to conclusively comment upon this ability of the latter.
Collapse
Affiliation(s)
- Sidhant Jain
- Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India.
| | - Meenakshi Rana
- Dyal Singh College, University of Delhi, Lodhi Road, Pragati Vihaar, New Delhi, India
| |
Collapse
|