1
|
Fayed B. Nanoparticles in the battle against Candida auris biofilms: current advances and future prospects. Drug Deliv Transl Res 2025; 15:1496-1512. [PMID: 39589626 PMCID: PMC11968567 DOI: 10.1007/s13346-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Candida auris has emerged as a significant global health threat due to its multidrug resistance and ability to form robust biofilms, particularly on medical devices and hospital surfaces. Biofilms protect C. auris from antifungal treatments and the host immune response, making infections persistent and difficult to control. This review explores the potential of nanoparticles to overcome the limitations of traditional antifungal therapies in combating C. auris biofilms. Nanoparticles, with their unique physicochemical properties, offer promising strategies to penetrate biofilm matrices, deliver antifungal agents, and disrupt biofilm structure. Various types of nanoparticles, including metallic, polymeric, lipid-based, and cyclodextrin-based, demonstrate enhanced biofilm penetration and antifungal activity. Their ability to generate reactive oxygen species, disrupt cell adhesion, and release antifungals in a controlled manner makes them ideal candidates for biofilm-targeted therapies. This review presents the current advancements in nanoparticle-based solutions, emphasizing the need for further research into their mechanisms of action, safety, and clinical application. By addressing the challenge of C. auris biofilms specifically, this review provides a critical synthesis of existing knowledge and identifies future directions for developing effective antifungal therapies using nanotechnology.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Phan-Canh T, Bitencourt T, Kuchler K. Gene dosage of PDR16 modulates azole susceptibility in Candida auris. Microbiol Spectr 2025:e0265924. [PMID: 40130854 DOI: 10.1128/spectrum.02659-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Affiliation(s)
- Trinh Phan-Canh
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, Vienna, Austria
- Labdia - Labordiagnostik GmbH, CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, Vienna, Austria
- Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, Vienna, Austria
| |
Collapse
|
3
|
Sedik S, Egger M, Hoenigl M. Climate Change and Medical Mycology. Infect Dis Clin North Am 2025; 39:1-22. [PMID: 39701899 DOI: 10.1016/j.idc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This review explores how climate change influences fungal disease dynamics, focusing on emergence of new fungal pathogens, increased antifungal resistance, expanding geographic ranges of fungal pathogens, and heightened host susceptibility. Rising temperatures and altered precipitation patterns enhance fungal growth and resistance mechanisms, complicating treatment efforts. Climate-driven geographic shifts are expanding the range of diseases like Valley fever, histoplasmosis, and blastomycosis. Additionally, natural disasters exacerbated by climate change increase exposure to fungal pathogens through environmental disruptions and trauma. Many of those impacts affect primarily those already disadvantaged by social determinants of health putting them at increased risk for fungal diseases.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, Graz 8036, Austria; Translational Mycology, Medical University of Graz, Graz, Austria. https://twitter.com/SarahSedik
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, Graz 8036, Austria; Translational Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria. https://twitter.com/MatthiasEgger11
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, Graz 8036, Austria; Translational Mycology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
4
|
Gaffar NR, Valand N, Venkatraman Girija U. Candidiasis: Insights into Virulence Factors, Complement Evasion and Antifungal Drug Resistance. Microorganisms 2025; 13:272. [PMID: 40005639 PMCID: PMC11858274 DOI: 10.3390/microorganisms13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Invasive fungal infections constitute a substantial global health burden, with invasive candidiasis representing approximately 70% of reported cases worldwide. The emergence of antifungal resistance among Candida species has further exacerbated this challenge to healthcare systems. Recent epidemiological studies have documented a concerning shift towards non-albicans Candida species, exhibiting reduced antifungal susceptibility, in invasive candidiasis cases. The complement system serves as a crucial first-line defence mechanism against Candida infections. These fungal pathogens can activate the complement cascade through three conventional pathways-classical, lectin, and alternative-in addition to activation through the coagulation system. While these pathways are initiated by distinct molecular triggers, they converge at C3 convertase formation, ultimately generating biologically active products and the membrane attack complex. Candida species have evolved sophisticated mechanisms to evade complement-mediated host defence, including the masking of cell wall components, proteolytic cleavage and inhibition of complement proteins, recruitment of complement regulators, and acquisition of host proteins. This review examines the intricate interplay between Candida species and the host complement system, with emphasis on complement evasion strategies. Furthermore, we highlight the importance of exploring the crosstalk between antifungal resistance and immune evasion strategies employed by Candida species. Understanding these interactions may facilitate the development of novel therapeutic approaches and strategies to overcome treatment failures in Candida species infections.
Collapse
Affiliation(s)
| | | | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| |
Collapse
|
5
|
Kumari A, Sharma A, Kumari L, Pawar SV, Singh R. Antibiofilm activity of truncated Staphylococcus aureus phenol soluble modulin α2 (SaΔ1Δ2PSMα2) against Candida auris in vitro and in an animal model of catheter-associated infection. Microb Pathog 2024; 196:106943. [PMID: 39288824 DOI: 10.1016/j.micpath.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Candida auris has emerged as a major multidrug-resistant nosocomial pathogen. The organism exhibits a persistent colonising phenotype, and causes recalcitrant infections often strongly linked to biofilm formation. Alternate strategies are urgently needed to combat this yeast and its biofilm-associated phenotype. This work aimed to evaluate the efficacy of select staphylococcal phenol soluble modulins (PSMs), namely, a truncated version of Staphylococcus aureus PSMα2 shortened by two amino acids at the N-terminal (SaΔ1Δ2PSMα2) and Staphylococcus epidermidis PSMδ against C. auris in vitro and in vivo. The antifungal and antibiofilm activity was tested by broth microdilution and XTT dye reduction assay. Combination effect with antifungal drugs was determined by fractional inhibitory concentration test. The efficacy of combination therapy using SaΔ1Δ2PSMα2 with amphotericin B or caspofungin was evaluated in murine model of C. auris catheter-associated infection. Based on antifungal activity, antibiofilm activity and cytotoxicity data, SaΔ1Δ2PSMα2 exhibited promising activity against C. auris biofilms. Nearly 50 % inhibition in biofilm formation was noted with 0.5-2 μM of the peptide against multiple clinical and C. auris colonizing isolates. It was synergistic with amphotericin B (ΣFIC = 0.281) and caspofungin (ΣFIC = 0.047) in vitro, and improved the activity of voriconazole in voriconazole-resistant C. auris. Combination therapy using amphotericin B or caspofungin (1 μg/ml) with SaΔ1Δ2PSMα2 resulted in 99.5 % reduction in C. auris biofilm in murine model, even when the peptide was used at a concentration that was neither fungicidal nor antibiofilm (0.125 μM; ≈0.26 μg/ml). The study provides insight into the potential utility of SaΔ1Δ2PSMα2-antifungal drug combination against C. auris biofilm-associated infections.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anayata Sharma
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Laxmi Kumari
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional redundancy in Candida auris cell surface adhesins crucial for cell-cell interaction and aggregation. Nat Commun 2024; 15:9212. [PMID: 39455573 PMCID: PMC11511831 DOI: 10.1038/s41467-024-53588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als4112 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Areej A Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One-Health Institute, KU Leuven, Leuven, Belgium.
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
7
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Phan-Canh T, Kuchler K. Do morphogenetic switching and intraspecies variation enhance virulence of Candida auris? PLoS Pathog 2024; 20:e1012559. [PMID: 39405274 PMCID: PMC11478855 DOI: 10.1371/journal.ppat.1012559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Intraspecies variations that affect pathogenicity and antifungal resistance traits pose a serious obstacle to efficient therapy of Candida auris infections. Recent reports indicate that mutations determine drug susceptibility and virulence. However, mutations alone cannot fully explain a bewildering variety of phenotypes in clinical isolates from known C. auris clades, suggesting an unprecedented complexity underlying virulence traits and antifungal resistance. Hence, we wish to discuss how phenotypic plasticity promotes morphogenetic switching and how that contributes to intraspecies variations in the human fungal pathogen C. auris. Further, we will also discuss how intraspecies variations and morphogenetic events can impact the progress in molecular mycology research that aims to find better treatments for C. auris infections. Finally, we will present our opinion as to the most relevant questions to be addressed when trying to better understand the pathophysiology of C. auris.
Collapse
Affiliation(s)
- Trinh Phan-Canh
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Gurajala S. Unveiling the rise of Candida auris: Latest developments and healthcare implications. IP INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY AND TROPICAL DISEASES 2024; 10:196-205. [DOI: 10.18231/j.ijmmtd.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/02/2025]
Abstract
, a fungus that is resistant to multiple drugs, has become a major global healthcare concern in recent years. The pathogen quickly disseminates within healthcare facilities, colonizes many surfaces, and leads to recurrent infections despite frequent disinfection measures. Automated systems frequently misidentify it, resulting in a delayed diagnosis. Inadequate hand hygiene, the use of multiple antibiotics, and contaminated medical equipment are the main causes of infections that primarily target critically ill patients in hospital intensive care units (ICUs). isolates are resistant to commonly used antifungal drugs like fluconazole, amphotericin, and echinocandins. This review article thoroughly examines the current understanding of infections, encompassing its epidemiology, clinical symptoms, diagnosis, treatment options, and prevention measures. It additionally summarizes a recent literature review on emerging diagnostic techniques and treatment options. Gaining a comprehensive understanding of the difficulties presented by this pathogen and staying informed of the most recent developments is essential for healthcare providers and policymakers in order to efficiently counteract its transmission and limit its detrimental impact on patient health
Collapse
Affiliation(s)
- Swathi Gurajala
- College of Applied Medical Sciences in Jubail, , Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Martinez M, Garsin DA, Lorenz MC. Vertebrate and invertebrate animal infection models of Candida auris pathogenicity. Curr Opin Microbiol 2024; 80:102506. [PMID: 38925077 PMCID: PMC11432150 DOI: 10.1016/j.mib.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Candida auris is an emerging fungal pathogen with several concerning qualities. First recognized in 2009, it has arisen in multiple geographically distinct genomic clades nearly simultaneously. C. auris strains are typically multidrug resistant and colonize the skin much better than most other pathogenic fungi; it also persists on abiotic surfaces, enabling outbreaks due to transmission in health care facilities. All these suggest a biology substantially different from the 'model' fungal pathogen, Candida albicans and support intensive investigation of C. auris biology directly. To uncover novel virulence mechanisms in this species requires the development of appropriate animal infection models. Various studies using mice, the definitive model, are inconsistent due to differences in mouse and fungal strains, immunosuppressive regimes, doses, and outcome metrics. At the same time, developing models of skin colonization present a route to new insights into an aspect of fungal pathogenesis that has not been well studied in other species. We also discuss the growing use of nonmammalian model systems, including both vertebrates and invertebrates, such as zebrafish, C. elegans, Drosophila, and Galleria mellonella, that have been productively employed in virulence studies with other fungal species. This review will discuss progress in developing appropriate animal models, outline current challenges, and highlight opportunities in demystifying this curious species.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA.
| |
Collapse
|
11
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional Redundancy in Candida auris Cell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation. RESEARCH SQUARE 2024:rs.3.rs-4077218. [PMID: 38562859 PMCID: PMC10984083 DOI: 10.21203/rs.3.rs-4077218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional Redundancy in Candida auris Cell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586120. [PMID: 38562758 PMCID: PMC10983922 DOI: 10.1101/2024.03.21.586120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 PMCID: PMC11657238 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|