1
|
Nakata T, Shibasaki M, Nishimura Y, Kinoshita T, Hashizaki T, Kamijo YI, Kouda K, Umemoto Y, Tajima F. Quantification of catecholamine neurotransmitters released from cutaneous vasoconstrictor nerve endings in men with cervical spinal cord injury. Am J Physiol Regul Integr Comp Physiol 2023; 324:R345-R352. [PMID: 36693170 DOI: 10.1152/ajpregu.00063.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Control of cutaneous circulation is critically important to maintain thermoregulation, especially in individuals with cervical spinal cord injury (CSCI) who have no or less central thermoregulatory drive. However, the peripheral vasoconstrictor mechanism and capability have not been fully investigated after CSCI. Post- and presynaptic sensitivities of the cutaneous vasoconstrictor system were investigated in 8 CSCI and 7 sedentary able-bodied (AB) men using an intradermal microdialysis technique. Eight doses of norepinephrine (NE, 10-8 to 10-1 M) and five doses of tyramine (TY, 10-8, 10-5 to 10-2 M) were administered into the anterior right and left thigh, respectively. Endogenous catecholamines, noradrenaline, and dopamine, collected at the TY site, were determined by high-performance liquid chromatography with electrochemical detection. Regardless of vasoconstrictor agents, cutaneous vascular conductance decreased dose-dependently and responsiveness was similar between the groups (NE: Group P = 0.255, Dose P = 0.014; TY: Group P = 0.468, Dose P < 0.001), whereas the highest dose of each drug induced cutaneous vasodilation. Administration of TY promoted the release of noradrenaline and dopamine in both groups. Notably, the amount of noradrenaline released was similar between the groups (P = 0.819), although the concentration of dopamine was significantly greater in individuals with CSCI than in AB individuals (P = 0.004). These results suggest that both vasoconstrictor responsiveness and neural functions are maintained after CSCI, and dopamine in the skin is likely to induce cutaneous vasodilation.
Collapse
Affiliation(s)
- Tomonori Nakata
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | | | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Wakayama, Japan
| | - Tokio Kinoshita
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Division of Rehabilitation, Wakayama Medical University Hospital, Wakayama, Japan
| | - Takamasa Hashizaki
- Division of Rehabilitation, Wakayama Medical University Hospital, Wakayama, Japan
| | - Yoshi-Ichiro Kamijo
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ken Kouda
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Goldstein DS, Cheshire WP. Roles of catechol neurochemistry in autonomic function testing. Clin Auton Res 2018; 28:273-288. [PMID: 29705971 DOI: 10.1007/s10286-018-0528-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Catechols are a class of compounds that contain adjacent hydroxyl groups on a benzene ring. Endogenous catechols in human plasma include the catecholamines norepinephrine, epinephrine (adrenaline), and dopamine; the catecholamine precursor DOPA, 3,4-dihydroxyphenylglycol (DHPG), which is the main neuronal metabolite of norepinephrine; and 3,4-dihydroxyphenylacetic acid (DOPAC), which is the main neuronal metabolite of dopamine. In the diagnostic evaluation of patients with known or suspected dysautonomias, measurement of plasma catechols is rarely diagnostic but often is informative. This review summarizes the roles of clinical catechol neurochemistry in autonomic function testing.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| | | |
Collapse
|
3
|
Abstract
The term "neurocardiology" refers to physiologic and pathophysiological interplays of the nervous and cardiovascular systems. This selective review provides an update about cardiovascular therapeutic implications of neurocardiology, with emphasis on disorders involving primary or secondary abnormalities of catecholamine systems. Concepts of scientific integrative medicine help understand these disorders. Scientific integrative medicine is not a treatment method or discipline but a way of thinking that applies systems concepts to acute and chronic disorders of regulation. Some of these concepts include stability by negative feedback regulation, multiple effectors, effector sharing, instability by positive feedback loops, allostasis, and allostatic load. Scientific integrative medicine builds on systems biology but is also distinct in several ways. A large variety of drugs and non-drug treatments are now available or under study for neurocardiologic disorders in which catecholamine systems are hyperfunctional or hypofunctional. The future of therapeutics in neurocardiology is not so much in new curative drugs as in applying scientific integrative medical ideas that take into account concurrent chronic degenerative disorders and interactions of multiple drug and non-drug treatments with each other and with those disorders.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Abstract
This review of clinical catecholamine neurochemistry is based on the Streeten Memorial Lecture at the 19th annual meeting of the American Autonomic Society and lectures at a satellite of the 6th Congress of the International Society of Autonomic Neuroscience. Here I provide historical perspective, describe sources and meanings of plasma levels of catecholamines and their metabolites, present a model of a sympathetic noradrenergic neuron that conveys how particular aspects of sympathetic nervous function affect plasma levels of catecholamines and their metabolites, and apply the model to understand plasma neurochemical patterns associated with some drugs and disease states.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC-1620, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Ivanova BB, Seidel RW, Kolev T, Sheldrick W, Spiteller M. 2-(Phenylethyl)ammonium hydrogensquarate hemihydrate: crystal structure, solid-state IR-spectroscopic and theoretical characterization. Amino Acids 2010; 39:309-14. [DOI: 10.1007/s00726-009-0451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
|
6
|
Koleva BB, Kolev T, Seidel RW, Spiteller M, Mayer-Figge H, Sheldrick WS. Bis(tyrammonium) sulfate dihydrate: Crystal structure, solid-state IR-spectroscopic and theoretical characterization. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.11.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Abstract
BACKGROUND Determinants of plasma norepinephrine (NE) and epinephrine concentrations are well known; those of the third endogenous catecholamine, dopamine (DA), remain poorly understood. We tested in humans whether DA enters the plasma after corelease with NE during exocytosis from sympathetic noradrenergic nerves. METHODS We reviewed plasma catecholamine data from patients referred for autonomic testing and control subjects under the following experimental conditions: during supine rest and in response to orthostasis; intravenous yohimbine (YOH), isoproterenol (ISO), or glucagon (GLU), which augment exocytotic release of NE from sympathetic nerves; intravenous trimethaphan (TRI) or pentolinium (PEN), which decrease exocytotic NE release; or intravenous tyramine (TYR), which releases NE by nonexocytotic means. We included groups of patients with pure autonomic failure (PAF), bilateral thoracic sympathectomies (SNS-x), or multiple system atrophy (MSA), since PAF and SNS-x are associated with noradrenergic denervation and MSA is not. RESULTS Orthostasis, YOH, ISO, and TYR increased and TRI/PEN decreased plasma DA concentrations. Individual values for changes in plasma DA concentrations correlated positively with changes in NE in response to orthostasis (r = 0.72, P < 0.0001), YOH (r = 0.75, P < 0.0001), ISO (r = 0.71, P < 0.0001), GLU (r = 0.47, P = 0.01), and TYR (r = 0.67, P < 0.0001). PAF and SNS-x patients had low plasma DA concentrations. We estimated that DA constitutes 2%-4% of the catecholamine released by exocytosis from sympathetic nerves and that 50%-90% of plasma DA has a sympathoneural source. CONCLUSIONS Plasma DA is derived substantially from sympathetic noradrenergic nerves.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-1620, USA.
| | | |
Collapse
|
8
|
Imrich R, Eldadah BA, Bentho O, Pechnik S, Sharabi Y, Holmes C, Grossman E, Goldstein DS. Functional effects of cardiac sympathetic denervation in neurogenic orthostatic hypotension. Parkinsonism Relat Disord 2008; 15:122-7. [PMID: 18514012 DOI: 10.1016/j.parkreldis.2008.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diseases characterized by neurogenic orthostatic hypotension (NOH), such as Parkinson disease (PD) and pure autonomic failure (PAF), are associated with cardiac sympathetic denervation, as reflected by low myocardial concentrations of 6-[(18)F]fluorodopamine-derived radioactivity. We studied the impact of such denervation on cardiac chronotropic and inotropic function. METHODS Cardiac inotropic function was assessed by the pre-ejection period index and the systolic time ratio index in response to the directly acting beta-adrenoceptor agonist, isoproterenol, and to the indirectly acting sympathomimetic amine, tyramine, in patients with PD+NOH or PAF (PD+NOH/PAF group, N=13). We compared the results to those in patients with multiple system atrophy, which usually entails NOH with normal cardiac sympathetic innervation (MSA, N=15), and in normal control subjects (N=5). RESULTS The innervated and denervated groups did not differ in baseline mean pre-ejection period index or systolic time ratio index. Tyramine increased cardiac contractility in the MSA patients and controls but not in the PD+NOH/PAF group. For similar heart rate responses, the PD+NOH/PAF group required less isoproterenol (p<0.01) and had lower plasma isoproterenol levels (p<0.01) than did the MSA group. CONCLUSIONS Among patients with NOH those with cardiac sympathetic denervation have an impaired inotropic response to tyramine and exaggerated responses to isoproterenol. This pattern suggests that cardiac denervation is associated with decreased ability to release endogenous norepinephrine from sympathetic nerves and with supersensitivity of cardiac beta-adrenoreceptors.
Collapse
Affiliation(s)
- Richard Imrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tyrammonium 4-nitrophthalate dihydrate: structural and spectroscopic elucidation. Amino Acids 2008; 36:29-33. [DOI: 10.1007/s00726-007-0021-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
10
|
Fung MM, Nguyen C, Mehtani P, Salem RM, Perez B, Thomas B, Das M, Schork NJ, Mahata SK, Ziegler MG, O'Connor DT. Genetic variation within adrenergic pathways determines in vivo effects of presynaptic stimulation in humans. Circulation 2008; 117:517-25. [PMID: 18180394 DOI: 10.1161/circulationaha.107.706317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Catecholamines govern stress blood pressure responses. Catecholaminergic responses may be partially genetic and contribute to the complex heritability of hypertension. METHODS AND RESULTS To evaluate catecholaminergic responses without systemic counterregulation, we infused graded concentrations of tyramine, an indirect presynaptic norepinephrine releaser, into dorsal hand veins of 49 normotensive men and women of 5 ethnicities. Vascular responses were coupled to common (minor allele frequency >10%) single-nucleotide polymorphisms at adrenergic target loci within presynaptic pathways. Significance was set at P<0.003 after Bonferroni correction. Generalized analysis of molecular variance (GAMOVA) was performed to determine whether genetic admixture contributed to results. Venoconstriction progressed to 47% with increasing concentrations of tyramine (0.129 to 25.8 mmol/L; P<0.001). Family history of hypertension (P<0.001) and female sex (P=0.02) predicted blunted tyramine responses. Two genetic loci significantly predicted vascular response: chromogranin B, which encodes a protein that catalyzes catecholamine vesicle formation (CHGB, exon 4, Glu348Glu; P=0.002), and cytochrome b-561 (CYB561, intron 1, C719G; P<0.001), an electron shuttle for catecholamine synthesis. Stepwise regression suggested important effects for the CHGB locus, with polymorphisms for the vacuolar-ATPase beta-subunit (ATP6V1B1, exon 1, Ile30Thr) and flavin-containing monooxygenase-3 (FMO3, exon 3, Lys158Glu, P=0.002). GAMOVA did not show a significant relationship between overall genetic profile and hand-vein constriction (P=0.29), which indicates that population stratification did not contribute to this phenotype. CONCLUSIONS Locally infused tyramine produced dose-dependent pressor responses, predicted by family history of hypertension, sex, and genetic variants at loci, particularly CHGB, that encode the biosynthesis, storage, and metabolism of catecholamines. Such variants may influence the complex heritability of adrenergic responses and perhaps hypertension.
Collapse
Affiliation(s)
- Maple M Fung
- Department of Medicine, Division of Nephrology-Hypertension, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|