1
|
Development and application of a rapid and sensitive liquid chromatography-mass spectrometry method for simultaneous analysis of cytarabine, cytarabine monophosphate, cytarabine diphosphate and cytarabine triphosphate in the cytosol and nucleus. J Pharm Biomed Anal 2022; 211:114582. [DOI: 10.1016/j.jpba.2022.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
|
2
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
3
|
Xie Y, Yang Y, He Y, Wang X, Zhang P, Li H, Liang S. Synthetic Biology Speeds Up Drug Target Discovery. Front Pharmacol 2020; 11:119. [PMID: 32174833 PMCID: PMC7054250 DOI: 10.3389/fphar.2020.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
As a rising emerging field, synthetic biology intends to realize precise regulations of cellular network by constructing artificial synthetic circuits, and it brings great opportunities to treat diseases and discover novel drug targets. Depending on the combination mode of different logic gates, various synthetic circuits are created to carry out multilevel regulations. In given synthetic circuits, drugs often act as inputs to drive circuits operation. It is becoming available to construct drug-responsive gene circuits for experimentally treating various disease models, including metabolic disease, immunity disease, cancer and bacterial infection. Synthetic biology works well in association with the CRISPR system for drug target functional screening. Remarkably, more and more well-designed circuits are developed to discover novel drug targets and precisely regulate drug therapy for diseases.
Collapse
Affiliation(s)
- Yixuan Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Haocheng Li
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
4
|
Intracellular cytarabine triphosphate in circulating blasts post-treatment predicts remission status in patients with acute myeloid leukemia. Exp Hematol 2019; 74:13-18.e3. [PMID: 31054867 DOI: 10.1016/j.exphem.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
Cytarabine remains the backbone of therapy in acute myeloid leukemia (AML). The ability to assess intracellular cytarabine triphosphate (ara-CTP) levels in patients receiving cytarabine represents a major goal in the prediction of treatment response. This study, conducted within a clinical setting, aimed to assess ara-CTP levels in circulating peripheral blasts from non-M3 AML patients receiving cytarabine at one of three dosing levels, using a novel biosensor assay. Results from the initial 72 hours post-commencement were correlated with day 28 remission status, with feasibility parameters concurrently assessed. Intracellular ara-CTP was detectable in ex vivo blasts post-treatment for standard-dose (SD) and high-dose (HD) patients (p < 0.05), and quantification revealed a 27-fold increase in intracellular steady-state concentration between the two dosing levels. For low-dose cytarabine, high rates of patient discharge and low intracellular concentrations limited analysis; however, assessment of intracellular ara-CTP concentration was achievable in a dwindling population of blasts for SD and HD treatment cohorts, with 4 hours post-treatment commencement potentially being most predictive of clinical response (r = -0.912, p = 0.0113). Concurrent assessment of peripheral leukemia-associated immunophenotype (LAIP)-positive cells revealed a decline in burden (0-72 hours), which correlated with remission status (p < 0.05). Unexpectedly high rates of night sampling led to challenges associated with sampling rates, but did not have an impact on patient compliance. Additional training of night staff improved feasibility substantially. Multiple peripheral sampling during the initial 72 hours of treatment is feasible in newly diagnosed patients, and ara-CTP is detectable over the initial 24 hours, facilitating prediction of chemosensitivity of leukemic blasts to cytarabine.
Collapse
|
5
|
Marques CNH, Nelson SM. Pharmacodynamics of ciprofloxacin against Pseudomonas aeruginosa planktonic and biofilm-derived cells. Lett Appl Microbiol 2019; 68:350-359. [PMID: 30740751 DOI: 10.1111/lam.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
The influence of growth phase and state on the survival and recovery of Pseudomonas aeruginosa exposed to ciprofloxacin was investigated using batch culture grown planktonic cells and disaggregated biofilm populations. Biofilms were either nonantibiotic exposed or previously exposed to ciprofloxacin before disaggregation and subsequent challenge with ciprofloxacin. Viable counts showed that late stationary phase cells were tolerant to ciprofloxacin over 24 h exposure, while all other populations presented a biphasic killing pattern. In contrast, the metabolic activity of planktonic and biofilm-derived cells remained similar to controls during the initial 6 h of ciprofloxacin exposure, despite a significant reduction in viable cell numbers. A similar effect was observed when assessing the postantibiotic effect of 1 h ciprofloxacin exposure. Thus, although cell reduction occurred, the metabolic status of the cells remained unchanged. The recovery of disaggregated biofilm cells previously exposed to ciprofloxacin was significantly quicker than naïve biofilm cells, and this latter population's recovery was significantly slower than all planktonic populations. Results from this work have implications for our understanding of biofilm-related infections and their resilience to antimicrobial treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Removal of biofilms from surfaces and infection sites via disaggregation and induction of dispersion may reverse their antibiotic tolerant state. However, little is known of the recovery of the cells upon disaggregation from biofilms. Driven by this gap in knowledge we quantified the effect of ciprofloxacin on disaggregated biofilms of Pseudomonas aeruginosa, including those previously exposed to ciprofloxacin. Our results provide further insight into bacterial resilience, regrowth, and antimicrobial efficacy, as reduction in cell viability does not directly correlate with the metabolic activity of bacteria at the time of the exposure to antimicrobials. Thus, despite a perceived reduction in viability, the potential for cell persistence and regrowth remains and recovery is quicker upon subsequent exposure to antimicrobial, supporting the increase in resilience and recurrence of infections.
Collapse
Affiliation(s)
- C N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.,Binghamton Biofilm Research Center (BBRC), Binghamton University, Binghamton, NY, USA
| | - S M Nelson
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
6
|
Anderson E, Mehta P, Heywood J, Rees B, Bone H, Robinson G, Reynolds D, Salisbury V, Mayer L. CPX-351 exhibits hENT-independent uptake and can be potentiated by fludarabine in leukaemic cells lines and primary refractory AML. Leuk Res 2018; 74:121-129. [PMID: 30119908 DOI: 10.1016/j.leukres.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/23/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
CPX-351, a liposomal formulation co-encapsulating cytarabine and daunorubicin (DNR) in a synergistic 5:1 M ratio, has shown favourable response in newly diagnosed elderly high-risk AML. This study assessed intracellular ara-CTP levels following in vitro exposure of human immortalised leukaemic cell lines and primary AML blasts to CPX-351, and investigated fludarabine potentiation of intracellular ara-CTP formation from CPX-351. Comparison of intracellular handling of CPX-351 to cytarabine in HL-60 cells indicated slower conversion to ara-CTP for CPX-351, but equivalent cytotoxicity to cytarabine and combined DNR/cytarabine (DA) at 48 h, mostly likely reflecting the need for intracellular liposome processing to release encapsulated drugs. Further assessment demonstrated cytotoxicity of CPX-351 to be superior to DA at 48 and 72 h in cytarabine-resistant THP-1 cells (p < 0.001), and this effect could not be inhibited upon blockade of human equilibrative nucleoside transporter (hENT) function with dipyridamole. Assessment of Flu-CPX in primary blasts from presentation AML patients (n = 5) demonstrated a more rapid and pronounced potentiation of ara-CTP from CPX-351 than in immortalised cell lines, with 4/5 patients showing significant increases in ara-CTP, notably for those that went on to fail induction and relapse treatment in vivo (n = 3). This suggests a favourable impact on patient outcome from Flu-CPX.
Collapse
Affiliation(s)
| | - Priyanka Mehta
- Bristol Haematology and Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Jonathan Heywood
- Bristol Haematology and Oncology Centre, University Hospital Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Barbara Rees
- University of the West of England, Bristol, United Kingdom
| | - Heather Bone
- University of the West of England, Bristol, United Kingdom
| | | | | | - Vyv Salisbury
- University of the West of England, Bristol, United Kingdom
| | - Lawrence Mayer
- Jazz Pharmaceuticals, Suite 250-887 Great Northern Way, Vancouver, BC, Canada
| |
Collapse
|
7
|
Saltepe B, Kehribar EŞ, Su Yirmibeşoğlu SS, Şafak Şeker UÖ. Cellular Biosensors with Engineered Genetic Circuits. ACS Sens 2018; 3:13-26. [PMID: 29168381 DOI: 10.1021/acssensors.7b00728] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing interest in building novel biological devices with designed cellular functionalities has triggered the search of innovative tools for biocomputation. Utilizing the tools of synthetic biology, numerous genetic circuits have been implemented such as engineered logic operation in analog and digital circuits. Whole cell biosensors are widely used biological devices that employ several biocomputation tools to program cells for desired functions. Up to the present date, a wide range of whole-cell biosensors have been designed and implemented for disease theranostics, biomedical applications, and environmental monitoring. In this review, we investigated the recent developments in biocomputation tools such as analog, digital, and mix circuits, logic gates, switches, and state machines. Additionally, we stated the novel applications of biological devices with computing functionalities for diagnosis and therapy of various diseases such as infections, cancer, or metabolic diseases, as well as the detection of environmental pollutants such as heavy metals or organic toxic compounds. Current whole-cell biosensors are innovative alternatives to classical biosensors; however, there is still a need to advance decision making capabilities by developing novel biocomputing devices.
Collapse
Affiliation(s)
- Behide Saltepe
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | | | - Urartu Özgür Şafak Şeker
- UNAM-Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Courbet A, Endy D, Renard E, Molina F, Bonnet J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci Transl Med 2016; 7:289ra83. [PMID: 26019219 DOI: 10.1126/scitranslmed.aaa3601] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whole-cell biosensors have several advantages for the detection of biological substances and have proven to be useful analytical tools. However, several hurdles have limited whole-cell biosensor application in the clinic, primarily their unreliable operation in complex media and low signal-to-noise ratio. We report that bacterial biosensors with genetically encoded digital amplifying genetic switches can detect clinically relevant biomarkers in human urine and serum. These bactosensors perform signal digitization and amplification, multiplexed signal processing with the use of Boolean logic gates, and data storage. In addition, we provide a framework with which to quantify whole-cell biosensor robustness in clinical samples together with a method for easily reprogramming the sensor module for distinct medical detection agendas. Last, we demonstrate that bactosensors can be used to detect pathological glycosuria in urine from diabetic patients. These next-generation whole-cell biosensors with improved computing and amplification capacity could meet clinical requirements and should enable new approaches for medical diagnosis.
Collapse
Affiliation(s)
- Alexis Courbet
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France
| | - Drew Endy
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Eric Renard
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital; INSERM 1411 Clinical Investigation Center; Institute of Functional Genomics, CNRS UMR 5203, INSERM U661, University of Montpellier, 34090 Montpellier, France. Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Franck Molina
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France.
| | - Jérôme Bonnet
- Sys2Diag FRE3690-CNRS/ALCEDIAG, Cap Delta, 34090 Montpellier, France. Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital; INSERM 1411 Clinical Investigation Center; Institute of Functional Genomics, CNRS UMR 5203, INSERM U661, University of Montpellier, 34090 Montpellier, France. Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
9
|
Anderson E, Salisbury V. Rapid in-vitro testing for chemotherapy sensitivity in leukaemia patients. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 145:189-214. [PMID: 25216956 DOI: 10.1007/978-3-662-43619-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioluminescent bacterial biosensors can be used in a rapid in vitro assay to predict sensitivity to commonly used chemotherapy drugs in acute myeloid leukemia (AML). The nucleoside analog cytarabine (ara-C) is the key agent for treating AML; however, up to 30 % of patients fail to respond to treatment. Screening of patient blood samples to determine drug response before commencement of treatment is needed. To achieve this aim, a self-bioluminescent reporter strain of Escherichia coli has been constructed and evaluated for use as an ara-C biosensor and an in vitro assay has been designed to predict ara-C response in clinical samples. Transposition mutagenesis was used to create a cytidine deaminase (cdd)-deficient mutant of E. coli MG1655 that responded to ara-C. The strain was transformed with the luxCDABE operon and used as a whole-cell biosensor for development an 8-h assay to determine ara-C uptake and phosphorylation by leukemic cells. Intracellular concentrations of 0.025 μmol/L phosphorylated ara-C were detected by significantly increased light output (P < 0.05) from the bacterial biosensor. Results using AML cell lines with known response to ara-C showed close correlation between the 8-h assay and a 3-day cytotoxicity test for ara-C cell killing. In retrospective tests with 24 clinical samples of bone marrow or peripheral blood, the biosensor-based assay predicted leukemic cell response to ara-C within 8 h. The biosensor-based assay may offer a predictor for evaluating the sensitivity of leukemic cells to ara-C before patients undergo chemotherapy and allow customized treatment of drug-sensitive patients with reduced ara-C dose levels. The 8-h assay monitors intracellular ara-CTP (cytosine arabinoside triphosphate) levels and, if fully validated, may be suitable for use in clinical settings.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Arabinofuranosylcytosine Triphosphate/analysis
- Arabinofuranosylcytosine Triphosphate/metabolism
- Biological Assay
- Biosensing Techniques
- Cell Line, Tumor
- Cytarabine/metabolism
- Cytarabine/pharmacology
- Drug Screening Assays, Antitumor
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genes, Reporter
- Genetic Engineering
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Limit of Detection
- Luciferases, Bacterial/genetics
- Luciferases, Bacterial/metabolism
- Luminescent Measurements
- Operon
- Phosphorylation
Collapse
Affiliation(s)
- Elizabeth Anderson
- Institute of Bio-Sensing Technology, University of the West of England, Bristol, UK
| | | |
Collapse
|
10
|
Anderson E, Conway M, Alloush H, O'Malley K, Smith MA, Martin A, Ruddock M, Reid C, Lamont J, Fitzgerald SP, Smith JG, Mehta P, Salisbury V. Investigation and verification of a bioluminescent biosensor for the quantitation of ara-CTP generation: a biomarker for cytosine arabinoside sensitivity in acute myeloid leukaemia. Biosens Bioelectron 2013; 52:345-53. [PMID: 24080214 DOI: 10.1016/j.bios.2013.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/18/2023]
Abstract
A novel whole cell bacterial biosensor, which emits light in response to the active metabolite of cytosine arabinoside (ara-C, cytarabine), ara-CTP, has been investigated and verified. The biosensor has been formulated as an ex vivo assay, designed for peripheral blood or bone marrow cells, which can produce a clinical result within a working day. The nucleoside analogue ara-C is a key agent for treatment of acute myeloid leukaemia (AML); treatment decisions are made rapidly with AML, patients often receiving same-day commencement of chemotherapy. Currently no rapid predictive test is available to select appropriate therapy for patients prior to treatment. Experiments were designed to determine optimal assay conditions using leukaemic cell lines. We observed a significant increase (~15 fold) in bioluminescence signal compared to control after 8-h incubation of the biosensor with ara-C. This corresponded to a >2-log increase in light output per bacterial cell. Interestingly, bioluminescence conferred a survival advantage to the bacteria following ara-C treatment. The assay is sensitive (lower limit of quantitation of 0.05 µM), selective, accurate (≤ 15% RE) and precise (≤ 15% coefficient of variation) over a linear concentration range of ara-CTP (0.05-0.5 µM), and detection is independent of reaction volume. Recovery of added standard was tested using ex vivo patient leukaemic cells (n=5). Stability studies on lyophilized bacterial biosensor were performed to ensure maintenance of performance over 12 months. The biosensor assay could be invaluable to the clinician, assisting with treatment selection, and potentially mitigating the risks of resistance and toxicity observed with this drug.
Collapse
Affiliation(s)
- Elizabeth Anderson
- Institute of Bio-Sensing Technology, University of the West of England, Bristol, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Michelini E, Cevenini L, Calabretta MM, Spinozzi S, Camborata C, Roda A. Field-deployable whole-cell bioluminescent biosensors: so near and yet so far. Anal Bioanal Chem 2013; 405:6155-63. [DOI: 10.1007/s00216-013-7043-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 12/24/2022]
|
12
|
Biosensors in clinical practice: focus on oncohematology. SENSORS 2013; 13:6423-47. [PMID: 23673681 PMCID: PMC3690064 DOI: 10.3390/s130506423] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 02/07/2023]
Abstract
Biosensors are devices that are capable of detecting specific biological analytes and converting their presence or concentration into some electrical, thermal, optical or other signal that can be easily analysed. The first biosensor was designed by Clark and Lyons in 1962 as a means of measuring glucose. Since then, much progress has been made and the applications of biosensors are today potentially boundless. This review is limited to their clinical applications, particularly in the field of oncohematology. Biosensors have recently been developed in order to improve the diagnosis and treatment of patients affected by hematological malignancies, such as the biosensor for assessing the in vitro pre-treatment efficacy of cytarabine in acute myeloid leukemia, and the fluorescence resonance energy transfer-based biosensor for assessing the efficacy of imatinib in chronic myeloid leukemia. The review also considers the challenges and future perspectives of biosensors in clinical practice.
Collapse
|
13
|
Anderson E, Smith MA, Martin A, Ruddock M, Lamont J, Alloush H, Conway M, Mehta P, Smith JG, Salisbury V. A novel bioluminescent bacterial biosensor for measurement of Ara-CTP and cytarabine potentiation by fludarabine in seven leukaemic cell lines. Leuk Res 2013; 37:690-6. [PMID: 23473919 DOI: 10.1016/j.leukres.2013.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/23/2012] [Accepted: 02/15/2013] [Indexed: 11/24/2022]
Abstract
This study evaluates an in vitro biosensor assay capable of detecting the intracellular levels of the tri-phosphorylated form of cytarabine (Ara-CTP) within one working day. The biosensor predicted the response of seven leukaemic cell lines with varying known sensitivities to cytarabine alone and in combination with fludarabine. High-performance liquid chromatography (HPLC), 3-day assessment of cellular viable mass, and flow cytometric assessment of apoptosis were used to validate biosensor performance. A correlation between the biosensor results and Ara-CTP quantitation by HPLC was confirmed (R=0.972). The biosensor was also capable of detecting enhanced accumulation of Ara-CTP following sequential pre-treatment of leukaemic cells with cytarabine ± fludarabine.
Collapse
Affiliation(s)
- Elizabeth Anderson
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Raut N, O'Connor G, Pasini P, Daunert S. Engineered cells as biosensing systems in biomedical analysis. Anal Bioanal Chem 2012; 402:3147-59. [PMID: 22311427 DOI: 10.1007/s00216-012-5756-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/07/2012] [Accepted: 01/16/2012] [Indexed: 01/08/2023]
Abstract
Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.
Collapse
Affiliation(s)
- Nilesh Raut
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | |
Collapse
|