1
|
A Proteomics Analysis Reveals 9 Up-Regulated Proteins Associated with Altered Cell Signaling in Colon Cancer Patients. Protein J 2017; 36:513-522. [PMID: 29128960 DOI: 10.1007/s10930-017-9746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes' grade B) and metastatic (Dukes' grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama™ Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages 'samr', 'gplots', 'supclust' (pelora, wilma algorithms), 'glmnet' for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.
Collapse
|
2
|
Cristobal A, van den Toorn HWP, van de Wetering M, Clevers H, Heck AJR, Mohammed S. Personalized Proteome Profiles of Healthy and Tumor Human Colon Organoids Reveal Both Individual Diversity and Basic Features of Colorectal Cancer. Cell Rep 2017; 18:263-274. [PMID: 28052255 DOI: 10.1016/j.celrep.2016.12.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Diseases at the molecular level are complex and patient dependent, necessitating development of strategies that enable precision treatment to optimize clinical outcomes. Organoid technology has recently been shown to have the potential to recapitulate the in vivo characteristics of the original individual's tissue in a three-dimensional in vitro culture system. Here, we present a quantitative mass-spectrometry-based proteomic analysis and a comparative transcriptomic analysis of human colorectal tumor and healthy organoids derived, in parallel, from seven patients. Although gene and protein signatures can be derived to distinguish the tumor organoid population from healthy organoids, our data clearly reveal that each patient possesses a distinct organoid signature at the proteomic level. We demonstrate that a personalized patient-specific organoid proteome profile can be related to the diagnosis of a patient and with future development contribute to the generation of personalized therapies.
Collapse
Affiliation(s)
- Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Henk W P van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Marc van de Wetering
- Princess Maxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 Utrecht, Netherlands
| | - Hans Clevers
- Princess Maxima Center for Pediatric Oncology, Uppsalalaan 8, 3584 Utrecht, Netherlands; Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 Utrecht, Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands.
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 Utrecht, the Netherlands; Department of Biochemistry, University of Oxford, New Biochemistry building, South Parks Road, Oxford OX1 3QU, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|