1
|
Zhao M, Cheah FSH, Tan ASC, Lian M, Phang GP, Agarwal A, Chong SS. Robust Preimplantation Genetic Testing of Huntington Disease by Combined Triplet-Primed PCR Analysis of the HTT CAG Repeat and Multi-Microsatellite Haplotyping. Sci Rep 2019; 9:16481. [PMID: 31712634 PMCID: PMC6848083 DOI: 10.1038/s41598-019-52769-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a lethal neurodegenerative disorder caused by expansion of a CAG repeat within the huntingtin (HTT) gene. Disease prevention can be facilitated by preimplantation genetic testing for this monogenic disorder (PGT-M). We developed a strategy for HD PGT-M, involving whole genome amplification (WGA) followed by combined triplet-primed PCR (TP-PCR) for HTT CAG repeat expansion detection and multi-microsatellite marker genotyping for disease haplotype phasing. The strategy was validated and tested pre-clinically in a simulated PGT-M case before clinical application in five cycles of a PGT-M case. The assay reliably and correctly diagnosed all embryos, even where allele dropout (ADO) occurred at the HTT CAG repeat locus or at one or more linked markers. Ten of the 27 embryos analyzed were diagnosed as unaffected. Four embryo transfers were performed, two of which involved fresh cycle double embryo transfers and two were frozen-thawed single embryo transfers. Pregnancies were achieved from each of the frozen-thawed single embryo transfers and confirmed to be unaffected by amniocentesis, culminating in live births at term. This strategy enhances diagnostic confidence for PGT-M of HD and can also be employed in situations where disease haplotype phase cannot be established prior to the start of PGT-M.
Collapse
Affiliation(s)
- Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Felicia Siew Hong Cheah
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Arnold Sia Chye Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Mulias Lian
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Gui Ping Phang
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Anupriya Agarwal
- Clinic for Human Reproduction, Department of Obstetrics and Gynecology, National University Hospital, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore. .,Molecular Diagnosis Center and Clinical Cytogenetics Service, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
2
|
Zhao M, Lian M, Cheah FSH, Tan ASC, Agarwal A, Chong SS. Identification of Novel Microsatellite Markers Flanking the SMN1 and SMN2 Duplicated Region and Inclusion Into a Single-Tube Tridecaplex Panel for Haplotype-Based Preimplantation Genetic Testing of Spinal Muscular Atrophy. Front Genet 2019; 10:1105. [PMID: 31781167 PMCID: PMC6851269 DOI: 10.3389/fgene.2019.01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Preimplantation genetic testing for the monogenic disorder (PGT-M) spinal muscular atrophy (SMA) is significantly improved by supplementation of SMN1 deletion detection with marker-based linkage analysis. To expand the availability of informative markers for PGT-M of SMA, we identified novel non-duplicated and highly polymorphic microsatellite markers closely flanking the SMN1 and SMN2 duplicated region. Six of the novel markers within 0.5 Mb of the 1.7 Mb duplicated region containing SMN1 and SMN2 (SMA6863, SMA6873, SMA6877, SMA7093, SMA7115, and SMA7120) and seven established markers (D5S1417, D5S1413, D5S1370, D5S1408, D5S610, D5S1999, and D5S637), all with predicted high heterozygosity values, were selected and optimized in a tridecaplex PCR panel, and their polymorphism indices were determined in two populations. Observed marker heterozygosities in the Chinese and Caucasian populations ranged from 0.54 to 0.86, and 98.4% of genotyped individuals (185 of 188) were heterozygous for ≥2 markers on either side of SMN1. The marker panel was evaluated for disease haplotype phasing using single cells from two parent–child trios after whole-genome amplification, and applied to a clinical IVF (in vitro fertilization) PGT-M cycle in an at-risk couple, in parallel with SMN1 deletion detection. Both direct and indirect test methods determined that none of five tested embryos were at risk for SMA, with haplotype analysis further identifying one embryo as unaffected and four as carriers. Fresh transfer of the unaffected embryo did not lead to implantation, but subsequent frozen-thaw transfer of a carrier embryo produced a pregnancy, with fetal genotype confirmed by amniocentesis, and a live birth at term.
Collapse
Affiliation(s)
- Mingjue Zhao
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mulias Lian
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Felicia S H Cheah
- Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Arnold S C Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Anupriya Agarwal
- Clinic for Human Reproduction, Department of Obstetrics and Gynecology, National University Hospital, Singapore, Singapore
| | - Samuel S Chong
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Preimplantation Genetic Diagnosis Center, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore.,Molecular Diagnosis Center and Clinical Cytogenetics Service, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Liao CH, Chang MY, Ma GC, Chang SP, Lin CF, Lin WH, Chen HF, Chen SU, Lee YC, Chao CC, Chen M, Hsieh ST. Preimplantation Genetic Diagnosis of Neurodegenerative Diseases: Review of Methodologies and Report of Our Experience as a Regional Reference Laboratory. Diagnostics (Basel) 2019; 9:E44. [PMID: 31018485 PMCID: PMC6627755 DOI: 10.3390/diagnostics9020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) has become a crucial approach in helping carriers of inherited disorders to give birth to healthy offspring. In this study, we review PGD methodologies and explore the use of amplification refractory mutation system quantitative polymerase chain reaction (ARMS-qPCR) and/or linkage analysis for PGD in neurodegenerative diseases that are clinically relevant with typical features, such as late onset, and which are severely debilitating. A total of 13 oocyte retrieval cycles were conducted in 10 cases with various neurodegenerative diseases. Among the 59 embryos analyzed, 49.2% (29/59) were unaffected and 50.8% (30/59) were affected. Of the 12 embryo transfer cycles, three resulted in pregnancy, and all pregnancies were delivered. The implantation rate and livebirth rate were 23.1% (3/13) per oocyte retrieval cycle and 25.0% (3/12) per embryo transfer cycle. Allele dropout (ADO) was noted in two embryos that were classified as unaffected by ARMS-qPCR but were evidenced as affected after prenatal diagnosis, rendering the false negative rate as 6.3% (2/32). Four among the 13 cycles underwent PGD by ARMS-qPCR coupled with linkage analysis, and all were correctly diagnosed. We conclude that PGD by ARMS-qPCR and/or linkage analysis is a feasible strategy, whereas ADO is a concern when ARMS-qPCR is used as the sole technology in PGD, especially in autosomal dominant diseases.
Collapse
Affiliation(s)
- Chun-Hua Liao
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 10041, Taiwan.
| | - Ming-Yuh Chang
- Division of Pediatric Neurology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua 50050, Taiwan.
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
| | - Shun-Ping Chang
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Chi-Fang Lin
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
| | - Wen-Hsiang Lin
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei 10048, Taiwan.
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan.
- Department of Molecular Biotechnology, Da-Yeh University, Changhua 51591, Taiwan.
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|