1
|
Vroemen WHM, Denessen EJS, van Doorn WPTM, Pelzer KEJM, Hackeng TM, Litjens EJR, Henskens YMC, van der Sande FM, Wodzig WKWH, Kooman JP, Bekers O, de Boer D, Mingels AMA. Differences in Cardiac Troponin T Composition in Myocardial Infarction and End-Stage Renal Disease Patients: A Blood Tube Effect? J Appl Lab Med 2024; 9:989-1000. [PMID: 38816928 DOI: 10.1093/jalm/jfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Cardiac troponin T (cTnT) is key in diagnosing myocardial infarction (MI) but is also elevated in end-stage renal disease (ESRD) patients. Specific larger cTnT proteoforms were identified for the acute phase of MI, while in serum of ESRD patients solely small cTnT fragments were found. However, others allocated this to a pre-analytic effect due to abundant thrombin generation in serum. Therefore, we investigated the effect of various anticoagulation methods on cTnT composition and concentration and compared the cTnT composition of MI and ESRD patients. METHODS The agreement of cTnT concentrations between simultaneously collected serum, lithium-heparin (LH) plasma, and ethylenediaminetetraacetic acid (EDTA) plasma was studied using the high-sensitivity (hs-)cTnT immunoassay. cTnT proteoform composition was investigated in a standardized time-dependent manner through spike experiments and in simultaneously collected blood matrixes of MI and ESRD patients. RESULTS Excellent hs-cTnT concentration agreements were observed across all blood matrixes (slopes > 0.98; 95% CI, 0.96-1.04). Time-dependent degradation (40 kDa intact:29 kDa fragment:15 to 18 kDa fragments) was found in LH plasma and EDTA plasma, and serum in ratios (%) of 90:10:0, 0:5:95, and 0:0:100, respectively (48 h after blood collection). Moreover, gel filtration chromatography (GFC) profiles illustrated mainly larger cTnT proteoforms in MI patients, while in ESRD patients mainly 15 to 18 kDa fragments were found for all matrices. CONCLUSIONS The extent of cTnT degradation in vitro is dependent on the (anti)coagulation method, without impacting hs-cTnT concentrations. Furthermore, mainly larger cTnT proteoforms were present in MI patients, while in ESRD patients mainly small 15 to 18 kDa cTnT fragments were found. These insights are essential when developing a novel hs-cTnT assay targeting larger cTnT proteoforms.
Collapse
Affiliation(s)
- Wim H M Vroemen
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ellen J S Denessen
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - William P T M van Doorn
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kelly E J M Pelzer
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tilman M Hackeng
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Elisabeth J R Litjens
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Frank M van der Sande
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Will K W H Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Douwe de Boer
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alma M A Mingels
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Damen SAJ, Cramer GE, Dieker HJ, Gehlmann H, Ophuis TJMO, Aengevaeren WRM, Fokkert M, Verheugt FWA, Suryapranata H, Wu AH, van Wijk XMR, Brouwer MA. Cardiac Troponin Composition Characterization after Non ST-Elevation Myocardial Infarction: Relation with Culprit Artery, Ischemic Time Window, and Severity of Injury. Clin Chem 2021; 67:227-236. [PMID: 33418572 DOI: 10.1093/clinchem/hvaa231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/10/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Troponin composition characterization has been implicated as a next step to differentiate among non-ST elevation myocardial infarction (NSTEMI) patients and improve distinction from other conditions with troponin release. We therefore studied coronary and peripheral troponin compositions in relation to clinical variables of NSTEMI patients. METHODS Samples were obtained from the great cardiac vein (GCV), coronary sinus (CS), and peripheral circulation of 45 patients with NSTEMI. We measured total cTnI concentrations, and assessed both complex cTnI (binary cTnIC + all ternary cTnTIC forms), and large-size cTnTIC (full-size and partially truncated cTnTIC). Troponin compositions were studied in relation to culprit vessel localization (left anterior descending artery [LAD] or non-LAD), ischemic time window, and peak CK-MB value. RESULTS Sampling occurred at a median of 25 hours after symptom onset. Of total peripheral cTnI, a median of 87[78-100]% consisted of complex cTnI; and 9[6-15]% was large-size cTnTIC. All concentrations (total, complex cTnI, and large-size cTnTIC) were significantly higher in the CS than in peripheral samples (P < 0.001). For LAD culprit patients, GCV concentrations were all significantly higher; in non-LAD culprit patients, CS concentrations were higher. Proportionally, more large-size cTnTIC was present in the earliest sampled patients and in those with the highest CK-MB peaks. CONCLUSIONS In coronary veins draining the infarct area, concentrations of both full-size and degraded troponin were higher than in the peripheral circulation. This finding, and the observed associations of troponin composition with the ischemic time window and the extent of sustained injury may contribute to future characterization of different disease states among NSTEMI patients.
Collapse
Affiliation(s)
- Sander A J Damen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gilbert E Cramer
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hendrik-Jan Dieker
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helmut Gehlmann
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ton J M Oude Ophuis
- Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marion Fokkert
- Department of Clinical Chemistry, Isala Clinics, Zwolle, The Netherlands
| | - Freek W A Verheugt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Suryapranata
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan H Wu
- Department of Clinical Chemistry, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
| | - Xander M R van Wijk
- Department of Clinical Chemistry, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Marc A Brouwer
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
de Boer D, Streng AS, van Doorn WPTM, Vroemen WHM, Bekers O, Wodzig WKWH, Mingels AMA. Cardiac Troponin T: The Impact of Posttranslational Modifications on Analytical Immunoreactivity in Blood up to the Excretion in Urine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:41-59. [PMID: 33959905 DOI: 10.1007/978-3-030-63908-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac troponin T (cTnT) is a sensitive and specific biomarker for detecting cardiac muscle injury. Its concentration in blood can be significantly elevated outside the normal reference range under several pathophysiological conditions. The classical analytical method in routine clinical analysis to detect cTnT in serum or plasma is a single commercial immunoassay, which is designed to quantify the intact cTnT molecule. The targeted epitopes are located in the central region of the cTnT molecule. However, in blood cTnT exists in different biomolecular complexes and proteoforms: bound (to cardiac troponin subunits or to immunoglobulins) or unbound (as intact protein or as proteolytic proteoforms). While proteolysis is a principal posttranslational modification (PTM), other confirmed PTMs of the proteoforms include N-terminal initiator methionine removal, N-acetylation, O-phosphorylation, O-(N-acetyl)-glucosaminylation, N(ɛ)-(carboxymethyl)lysine modification and citrullination. The immunoassay probably detects several of those cTnT biomolecular complexes and proteoforms, as long as they have the centrally targeted epitopes in common. While analytical cTnT immunoreactivity has been studied predominantly in blood, it can also be detected in urine, although it is unclear in which proteoform cTnT immunoreactivity is present in urine. This review presents an overview of the current knowledge on the pathophysiological lifecycle of cTnT. It provides insight into the impact of PTMs, not only on the analytical immunoreactivity, but also on the excretion of cTnT in urine as one of the waste routes in that lifecycle. Accordingly, and after isolating the proteoforms from urine of patients suffering from proteinuria and acute myocardial infarction, the structures of some possible cTnT proteoforms are reconstructed using mass spectrometry and presented.
Collapse
Affiliation(s)
- Douwe de Boer
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Alexander S Streng
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - William P T M van Doorn
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wim H M Vroemen
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Otto Bekers
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Will K W H Wodzig
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alma M A Mingels
- Unit of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences (FHML) of Maastricht University (UM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Damen SAJ, Vroemen WHM, Brouwer MA, Mezger STP, Suryapranata H, van Royen N, Bekers O, Meex SJR, Wodzig WKWH, Verheugt FWA, de Boer D, Cramer GE, Mingels AMA. Multi-Site Coronary Vein Sampling Study on Cardiac Troponin T Degradation in Non-ST-Segment-Elevation Myocardial Infarction: Toward a More Specific Cardiac Troponin T Assay. J Am Heart Assoc 2019; 8:e012602. [PMID: 31269858 PMCID: PMC6662151 DOI: 10.1161/jaha.119.012602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/17/2019] [Indexed: 01/24/2023]
Abstract
Background Cardiac troponin T ( cTnT ) is seen in many other conditions besides myocardial infarction, and recent studies demonstrated distinct forms of cTnT . At present, the in vivo formation of these different cTnT forms is incompletely understood. We therefore performed a study on the composition of cTnT during the course of myocardial infarction, including coronary venous system sampling, close to its site of release. Methods and Results Baseline samples were obtained from multiple coronary venous system locations, and a peripheral artery and vein in 71 non- ST -segment-elevation myocardial infarction patients. Additionally, peripheral blood was drawn at 6- and 12-hours postcatheterization. cTnT concentrations were measured using the high-sensitivity- cTnT immunoassay. The cTnT composition was determined via gel filtration chromatography and Western blotting in an early and late presenting patient. High-sensitivity - cTnT concentrations were 28% higher in the coronary venous system than peripherally (n=71, P<0.001). Coronary venous system samples demonstrated cT n T-I-C complex, free intact cTnT , and 29 kD a and 15 to 18 kD a cTnT fragments, all in higher concentrations than in simultaneously obtained peripheral samples. While cT n T-I-C complex proportionally decreased, and disappeared over time, 15 to 18 kD a cTnT fragments increased. Moreover, cT n T-I-C complex was more prominent in the early than in the late presenting patient. Conclusions This explorative study in non- ST -segment-elevation myocardial infarction shows that cTnT is released from cardiomyocytes as a combination of cT n T-I-C complex, free intact cTnT , and multiple cTnT fragments indicating intracellular cTnT degradation. Over time, the cT n T-I-C complex disappeared because of in vivo degradation. These insights might serve as a stepping stone toward a high-sensitivity- cTnT immunoassay more specific for myocardial infarction.
Collapse
Affiliation(s)
- Sander A. J. Damen
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Wim H. M. Vroemen
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Marc A. Brouwer
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Stephanie T. P. Mezger
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Harry Suryapranata
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Niels van Royen
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Otto Bekers
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Steven J. R. Meex
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Will K. W. H. Wodzig
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - Freek W. A. Verheugt
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Douwe de Boer
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| | - G. Etienne Cramer
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Alma M. A. Mingels
- Central Diagnostic LaboratoryMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|