1
|
Nilagiri VK, Lee SSY, Lingham G, Charng J, Yazar S, Hewitt AW, Griffiths LR, Sanfilippo PG, Tsai TH, Mackey DA. Distribution of Axial Length in Australians of Different Age Groups, Ethnicities, and Refractive Errors. Transl Vis Sci Technol 2023; 12:14. [PMID: 37594450 PMCID: PMC10445212 DOI: 10.1167/tvst.12.8.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Purpose Treatments are available to slow myopic axial elongation. Understanding normal axial length (AL) distributions will assist clinicians in choosing appropriate treatment for myopia. We report the distribution of AL in Australians of different age groups and refractive errors. Methods Retrospectively collected spherical equivalent refraction (SER) and AL data of 5938 individuals aged 5 to 89 years from 8 Australian studies were included. Based on the SER, participants were classified as emmetropes, myopes, and hyperopes. Two regression model parameterizations (piece-wise and restricted cubic splines [RCS]) were applied to the cross-sectional data to analyze the association between age and AL. These results were compared with longitudinal data from the Raine Study where the AL was measured at age 20 (baseline) and 28 years. Results A piece-wise regression model (with 1 knot) showed that myopes had a greater increase in AL before 18 years by 0.119 mm/year (P < 0.001) and after 18 years by 0.011 mm/year (P < 0.001) compared to emmetropes and hyperopes, with the RCS model (with 3 knots) showing similar results. The longitudinal data from the Raine Study revealed that, when compared to emmetropes, only myopes showed a significant change in the AL in young adulthood (by 0.016 mm/year, P < 0.001). Conclusions The AL of myopic eyes increases more rapidly in childhood and slightly in early adulthood. Further studies of longitudinal changes in AL, particularly in childhood, are required to guide myopia interventions. Translational Relevance The axial length of myopic eyes increases rapidly in childhood, and there is a minimal increase in the axial length in non-myopic eyes after 18 years of age.
Collapse
Affiliation(s)
- Vinay Kumar Nilagiri
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
| | - Samantha Sze-Yee Lee
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
| | - Gareth Lingham
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
- Centre for Eye Research Ireland, School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Jason Charng
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
- Department of Optometry, School of Allied Health, University of Western Australia, Perth, Western Australia, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Alex W. Hewitt
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Paul G. Sanfilippo
- Centre for Eye Research Australia, University of Melbourne, Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Tzu-Hsun Tsai
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), University of Western Australia, Perth, Western Australia, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Tasmania, Australia
| |
Collapse
|
2
|
Benton MC, Lea RA, Macartney-Coxson D, Sutherland HG, White N, Kennedy D, Mengersen K, Haupt LM, Griffiths LR. Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate. Epigenetics Chromatin 2019; 12:60. [PMID: 31594537 PMCID: PMC6781349 DOI: 10.1186/s13072-019-0304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Allele-specific methylation (ASM) occurs when DNA methylation patterns exhibit asymmetry among alleles. ASM occurs at imprinted loci, but its presence elsewhere across the human genome is indicative of wider importance in terms of gene regulation and disease risk. Here, we studied ASM by focusing on blood-based DNA collected from 24 subjects comprising a 3-generation pedigree from the Norfolk Island genetic isolate. We applied a genome-wide bisulphite sequencing approach with a genotype-independent ASM calling method to map ASM across the genome. Regions of ASM were then tested for enrichment at gene regulatory regions using Genomic Association Test (GAT) tool. Results In total, we identified 1.12 M CpGs of which 147,170 (13%) exhibited ASM (P ≤ 0.05). When including contiguous ASM signal spanning ≥ 2 CpGs, this condensed to 12,761 ASM regions (AMRs). These AMRs tagged 79% of known imprinting regions and most (98.1%) co-localised with known single nucleotide variants. Notably, miRNA and lncRNA showed a 3.3- and 1.8-fold enrichment of AMRs, respectively (P < 0.005). Also, the 5′ UTR and start codons each showed a 3.5-fold enrichment of AMRs (P < 0.005). There was also enrichment of AMRs observed at subtelomeric regions of many chromosomes. Five out of 11 large AMRs localised to the protocadherin cluster on chromosome 5. Conclusions This study shows ASM extends far beyond genomic imprinting in humans and that gene regulatory regions are hotspots for ASM. Future studies of ASM in pedigrees should help to clarify transgenerational inheritance patterns in relation to genotype and disease phenotypes.
Collapse
Affiliation(s)
- Miles C Benton
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Human Genomics, Institute of Environmental Science and Research, Wellington, New Zealand
| | - Rodney A Lea
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Donia Macartney-Coxson
- Human Genomics, Institute of Environmental Science and Research, Wellington, New Zealand
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicole White
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Daniel Kennedy
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kerry Mengersen
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Expression QTL analysis of glaucoma endophenotypes in the Norfolk Island isolate provides evidence that immune-related genes are associated with optic disc size. J Hum Genet 2017; 63:83-87. [PMID: 29215094 DOI: 10.1038/s10038-017-0374-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Primary open-angle glaucoma (POAG) is influenced by both genetic and environmental factors. Despite significant progress in identifying genetic variants associated with POAG, there remains a substantial amount of unexplained heritability. Study design features that may enhance knowledge of the genetic architecture include focusing on multiple quantitative traits related to ocular disorders (i.e. endophenotypes), targeting genetic variants that directly influence gene expression (i.e. cis-eQTLs) and utilising genetically isolated populations to reduce genetic and environmental noise and thus enhance association signals. In this study we performed heritability and blood-based eQTL association analysis of five key POAG endophenotypes in 330 individuals from the Norfolk Island (NI) isolate. Results showed evidence of heritability for all five traits, with H2 estimates ranging from 0.35 for intraocular pressure (IOP) to 0.82 for central corneal thickness (CCT) (P < 0.05). The primary finding was for BTN3A2, whereby both cis-SNP and transcript were significantly associated with disc size within a conditional regression model. Specifically, this model included rs853676 (β = 0.23,P = 0.008) and transcript (β = 0.23, P = 0.03). We also observed a cis-SNP association between optic disc size and LPCAT2 independent of transcript (P = 0.0004). These genes have specific functions in immune system pathways and suggest a role for an inherited immune component of POAG risk. This study also demonstrates an alternate approach to understanding the functional genetic basis of POAG and ocular health more generally.
Collapse
|
4
|
Benton MC, Sutherland HG, Macartney-Coxson D, Haupt LM, Lea RA, Griffiths LR. Methylome-wide association study of whole blood DNA in the Norfolk Island isolate identifies robust loci associated with age. Aging (Albany NY) 2017; 9:753-768. [PMID: 28255110 PMCID: PMC5391229 DOI: 10.18632/aging.101187] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/28/2017] [Indexed: 01/07/2023]
Abstract
Epigenetic regulation of various genomic functions, including gene expression, provide mechanisms whereby an organism can dynamically respond to changes in its environment and modify gene expression accordingly. One epigenetic mechanism implicated in human aging and age-related disorders is DNA methylation. Isolated populations such as Norfolk Island (NI) should be advantageous for the identification of epigenetic factors related to aging due to reduced genetic and environmental variation. Here we conducted a methylome-wide association study of age using whole blood DNA in 24 healthy female individuals from the NI genetic isolate (aged 24-47 years). We analysed 450K methylation array data using a machine learning approach (GLMnet) to identify age-associated CpGs. We identified 497 CpG sites, mapping to 422 genes, associated with age, with 11 sites previously associated with age. The strongest associations identified were for a single CpG site in MYOF and an extended region within the promoter of DDO. These hits were validated in curated public data from 2316 blood samples (MARMAL-AID). This study is the first to report robust age associations for MYOF and DDO, both of which have plausible functional roles in aging. This study also illustrates the value of genetic isolates to reveal new associations with epigenome-level data.
Collapse
Affiliation(s)
- Miles C Benton
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Donia Macartney-Coxson
- Kenepuru Science Centre, Institute of Environmental Science and Research, Wellington 5240, New Zealand
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Rodney A Lea
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| |
Collapse
|
5
|
Clement CI, Parker DGA, Goldberg I. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea. Open Ophthalmol J 2016; 10:35-43. [PMID: 27014386 PMCID: PMC4780515 DOI: 10.2174/1874364101610010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022] Open
Abstract
Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics.
Collapse
Affiliation(s)
- Colin I Clement
- Eye Associates, 4/187 Macquarie Street Sydney NSW 2000, Australia; Glaucoma Unit, Sydney Eye Hospital, Australia; Discipline of Ophthalmology, The University of Sydney, Australia; Gosford and Wyong Eye Surgery, Australia
| | - Douglas G A Parker
- Eye Associates, 4/187 Macquarie Street Sydney NSW 2000, Australia; Gosford and Wyong Eye Surgery, Australia
| | - Ivan Goldberg
- Eye Associates, 4/187 Macquarie Street Sydney NSW 2000, Australia; Glaucoma Unit, Sydney Eye Hospital, Australia; Discipline of Ophthalmology, The University of Sydney, Australia
| |
Collapse
|
6
|
Yoon JJ, Misra SL, McGhee CNJ, Patel DV. Demographics and ocular biometric characteristics of patients undergoing cataract surgery in Auckland, New Zealand. Clin Exp Ophthalmol 2015; 44:106-13. [DOI: 10.1111/ceo.12634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jinny J Yoon
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Charles NJ McGhee
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| | - Dipika V Patel
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences; University of Auckland; Auckland New Zealand
| |
Collapse
|
7
|
Sherwin JC, Hewitt AW, Kearns LS, Griffiths LR, Mackey DA, Coroneo MT. The association between pterygium and conjunctival ultraviolet autofluorescence: the Norfolk Island Eye Study. Acta Ophthalmol 2013; 91:363-70. [PMID: 22176664 DOI: 10.1111/j.1755-3768.2011.02314.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the association between conjunctival ultraviolet autofluorescence (UVAF), a biomarker of ocular ultraviolet radiation (UVR) exposure, and prevalent pterygium. METHODS We conducted a cross-sectional study on Norfolk Island, South Pacific. All permanent residents aged ≥15 were invited to participate. Participants completed a sun exposure questionnaire and underwent autorefraction and slit lamp biomicroscope examination. Area of conjunctival UVAF (sum of temporal/nasal area in right and left eyes) was determined using computerized methods. Multivariate logistic and linear regression models were used to estimate the associations with pterygia and UVAF, respectively. RESULTS Of 641 participants, 70 people (10.9%) had pterygium in one or both eyes, and prevalence was higher in males (15.0% versus 7.7%, p = 0.003). Significant independent associations with pterygium in any eye were UVAF (per 10 mm(2)) [odds ratio (OR) 1.16, 95% confidence interval (CI) 1.16-1.28, p = 0.002], tanning skin phenotype (OR 2.17, 1.20-3.92, p = 0.010) and spending more than three-quarters of the day outside (OR 2.22, 1.20-4.09, p = 0.011). Increasing quartile of UVAF was associated with increased risk of pterygium following adjustment of age, sex and time outdoors (p(Trend) = 0.002). Independent associations with increasing UVAF (per 10 mm(2)) were decreasing age, time outdoors, skin type and male gender (all p < 0.001). UVAF area correlated well with the duration of outdoor activity (p(Trend) < 0.001). CONCLUSION Pterygium occurs in approximately one-tenth of Norfolk Islanders. Increasing conjunctival UVAF is associated with prevalent pterygia, confirming earlier epidemiological, laboratory and ray-tracing studies that pterygia are associated with UVR. Protection from the sun should be encouraged to reduce the prevalence of pterygium in the community.
Collapse
Affiliation(s)
- Justin C Sherwin
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Department of Ophthalmology, Melbourne, Vic., Australia
| | | | | | | | | | | |
Collapse
|
8
|
Sherwin JC, Kelly J, Hewitt AW, Kearns LS, Griffiths LR, Mackey DA. Prevalence and predictors of refractive error in a genetically isolated population: the Norfolk Island Eye Study. Clin Exp Ophthalmol 2011; 39:734-42. [DOI: 10.1111/j.1442-9071.2011.02579.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|