Fiz JA, Gnitecki J, Kraman SS, Wodicka GR, Pasterkamp H. Effect of body position on lung sounds in healthy young men.
Chest 2008;
133:729-36. [PMID:
18198265 DOI:
10.1378/chest.07-1102]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND
The effect of body position on the generation of abnormal respiratory sounds (eg, snoring and stridor) is well recognized. Postural effects on normal lung sounds have been studied in less detail but need to be clarified if respiratory acoustic measurements are to be used effectively in clinical practice.
METHODS
Lung sounds and airflow were recorded in six healthy male subjects. Two acoustic sensors were placed over corresponding sites of the right and left chest, first anteriorly and then on the back. Subjects were studied in sitting, supine, prone, and lateral decubitus positions. Lung sound intensity (LSI) was determined at flows of 0.4 to 0.6 L/s and 0.8 to 1.2 L/s within frequency bands of 150 to 300 Hz and 300 to 600 Hz.
RESULTS
LSI was greater over the dependent lungs in the lateral decubitus positions. In the sitting position, LSI was greater on the left compared with the right posterior lung at the same airflow within the same frequency bands. Compared with sitting, neither the supine nor prone positions caused a significant change in LSI.
CONCLUSIONS
Our study confirms previously reported asymmetries of normal lung sounds. The insignificant change of flow-specific LSI between the upright and horizontal positions in healthy subjects is encouraging for the clinical use of respiratory acoustic measurements. Further studies should address postural effects on lung sounds in patients with acute lung injury and other lung pathologies.
Collapse