1
|
Li S, Li Y, Liu Y, Wu Y, Wang Q, Jin L, Zhang D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. Int J Mol Sci 2023; 24:ijms24108642. [PMID: 37239989 DOI: 10.3390/ijms24108642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Various lung diseases endanger people's health. Side effects and pharmaceutical resistance complicate the treatment of acute lung injury, pulmonary fibrosis, and lung cancer, necessitating the development of novel treatments. Antimicrobial peptides (AMPs) are considered to serve as a viable alternative to conventional antibiotics. These peptides exhibit a broad antibacterial activity spectrum as well as immunomodulatory properties. Previous studies have shown that therapeutic peptides including AMPs had remarkable impacts on animal and cell models of acute lung injury, pulmonary fibrosis, and lung cancer. The purpose of this paper is to outline the potential curative effects and mechanisms of peptides in the three types of lung diseases mentioned above, which may be used as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Shujiao Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yuying Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qiuyu Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
2
|
Prevention and Amelioration of Rodent Ventilation-Induced Lung Injury with Either Prophylactic or Therapeutic feG Administration. Lung 2019; 197:671-680. [PMID: 31300872 DOI: 10.1007/s00408-019-00252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Mechanical ventilation is a well-established therapy for patients with acute respiratory failure. However, up to 35% of mortality in acute respiratory distress syndrome may be attributed to ventilation-induced lung injury (VILI). We previously demonstrated the efficacy of the synthetic tripeptide feG for preventing and ameliorating acute pancreatitis-associated lung injury. However, as the mechanisms of induction of injury during mechanical ventilation may differ, we aimed to investigate the effect of feG in a rodent model of VILI, with or without secondary challenge, as a preventative treatment when administered before injury (prophylactic), or as a therapeutic treatment administered following initiation of injury (therapeutic). METHODS Lung injury was assessed following prophylactic or therapeutic intratracheal feG administration in a rodent model of ventilation-induced lung injury, with or without secondary intratracheal lipopolysaccharide challenge. RESULTS Prophylactic feG administration resulted in significant improvements in arterial blood oxygenation and respiratory mechanics, and decreased lung oedema, bronchoalveolar lavage protein concentration, histological tissue injury scores, blood vessel activation, bronchoalveolar lavage cell infiltration and lung myeloperoxidase activity in VILI, both with and without lipopolysaccharide. Therapeutic feG administration similarly ameliorated the severity of tissue damage and encouraged the resolution of injury. feG associated decreases in endothelial adhesion molecules may indicate a mechanism for these effects. CONCLUSIONS This study supports the potential for feG as a pharmacological agent in the prevention or treatment of lung injury associated with mechanical ventilation.
Collapse
|
3
|
Puukila S, Muise S, McEvoy J, Bouchier T, Hooker AM, Boreham DR, Khaper N, Dixon DL. Acute pulmonary and splenic response in an in vivo model of whole-body low-dose X-radiation exposure. Int J Radiat Biol 2019; 95:1072-1084. [DOI: 10.1080/09553002.2019.1625459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Stephanie Puukila
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Department of Biology, Laurentian University, Sudbury, Canada
| | - Stacy Muise
- Department of Medical Physics, McMaster University, Hamilton, Canada
| | - James McEvoy
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Department of Medical Physics, McMaster University, Hamilton, Canada
| | - Tara Bouchier
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Antony M. Hooker
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Douglas R. Boreham
- Department of Medical Physics, McMaster University, Hamilton, Canada
- Department of Medical Science, Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada
- Integration Department, Bruce Power, Tiverton, Canada
| | - Neelam Khaper
- Department of Medical Science, Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada
| | - Dani-Louise Dixon
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Department of Medical Science, Northern Ontario School of Medicine, Sudbury/Thunder Bay, Canada
| |
Collapse
|
4
|
Bihari S, Dixon DL, Lawrence MD, De Bellis D, Bonder CS, Dimasi DP, Bersten AD. Fluid-induced lung injury-role of TRPV4 channels. Pflugers Arch 2017; 469:1121-1134. [PMID: 28456852 DOI: 10.1007/s00424-017-1983-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023]
Abstract
Administration of bolus intravenous fluid is associated with respiratory dysfunction and increased mortality, findings with no clear mechanistic explanation. The objective of this study was to examine whether bolus intravenous (i.v.) fluid administration results in acute lung injury in a rat model and further, to examine whether this injury is associated with transient receptor potential vallinoid (TRPV)4 channel function and endothelial inflammatory response. Healthy male Sprague-Dawley rats were administered 60 ml/kg 0.9% saline i.v. over 30 min. Manifestation of acute lung injury was assessed by lung physiology, morphology, and markers of inflammation. The role of TRPV4 channels in fluid-induced lung injury was subsequently examined by the administration of ruthenium red (RR) in this established rat model and again in TRPV4 KO mice. In endothelial cell culture, permeability and P-selectin expression were measured following TRPV4 agonist with and without antagonist; 0.9% saline resulted in an increase in lung water, lavage protein and phospholipase A2, and plasma angiopoietin-2, with worsening in arterial blood oxygen (PaO2), lung elastance, surfactant activity, and lung histological injury score. These effects were ameliorated following i.v. fluid in rats receiving RR. TRPV4 KO mice did not develop lung edema. Expression of P-selectin increased in endothelial cells following administration of a TRPV4 agonist, which was ameliorated by simultaneous addition of RR. Bolus i.v. 0.9% saline resulted in permeability pulmonary edema. Data from ruthenium red, TRPV4 KO mice, and endothelial cell culture suggest activation of TRPV4 and release of angiopoietin 2 and P-selectin as the central mechanism.
Collapse
Affiliation(s)
- Shailesh Bihari
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia. .,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia.
| | - Dani-Louise Dixon
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Dylan De Bellis
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - David P Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - Andrew D Bersten
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
5
|
Bihari S, Dixon DL, Lawrence MD, Bersten AD. Induced hypernatraemia is protective in acute lung injury. Respir Physiol Neurobiol 2016; 227:56-67. [PMID: 26956742 DOI: 10.1016/j.resp.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. METHODS Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. RESULTS Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). CONCLUSION Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- Shailesh Bihari
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| | - Dani-Louise Dixon
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| | - Mark D Lawrence
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia.
| | - Andrew D Bersten
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
6
|
St Laurent CD, St Laurent KE, Mathison RD, Befus AD. Calcium-binding protein, spermatid-specific 1 is expressed in human salivary glands and contains an anti-inflammatory motif. Am J Physiol Regul Integr Comp Physiol 2015; 308:R569-75. [PMID: 25632019 DOI: 10.1152/ajpregu.00153.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022]
Abstract
Salivary glands are involved in the production and exocrine and endocrine secretion of biologically active proteins, polypeptides, and hormones involved in growth and differentiation, homeostasis, and digestion. We have previously studied the prohormone submandibular rat 1 (SMR1), product of the Vcsa1 gene, which is highly expressed in the testes and salivary glands of rats, and can be cleaved to produce polypeptides with analgesic, erectile function, and anti-inflammatory activities. Humans lack the Vcsa1 gene, but homologous sequences and functions for analgesia and erectile function exist in the human genes Prol1, SMR3a, and SMR3b located on the human chromosomal region close to where Vcsa1 lies in the rat. Here we show the human protein calcium-binding protein spermatid-specific 1 (CABS1) contains a similar sequence to the anti-inflammatory sequence in rat SMR1, thus CABS1 may be another human gene with homologous function to Vcsa1. Using Western blot and PCR, we discovered that the human protein CABS1, previously thought to only be expressed in the testes, is also expressed in the salivary glands and lung, in a tissue-specific manner. Peptides derived from CABS1 were tested in an in vivo mouse model of lipopolysaccharide (LPS)-induced neutrophilia and an ex vivo rat model of antigen-induced intestinal anaphylaxis and significantly reduced both neutrophil accumulation in bronchoalveolar lavage fluid and antigen-induced ileal contractions, respectively. Thus human CABS1 has a peptide motif homologous to the anti-inflammatory peptide sequence of rat SMR1. Whether this similarity of CABS1 extends to the neuroendocrine regulation of the anti-inflammatory activity seen for SMR1 remains to be determined.
Collapse
Affiliation(s)
- Chris D St Laurent
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Katherine E St Laurent
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - Ron D Mathison
- Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A Dean Befus
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|