1
|
Petrova L, Gergov N, Stoup M, Zapryanova S, Van Damme EJM, Lebègue N, Liberelle M, Zasheva D, Bogoeva V. Jacalin-Curcumin Complex Sensitizes the Breast Cancer MDA-MB-231 Cell Line. Int J Mol Sci 2023; 24:17399. [PMID: 38139227 PMCID: PMC10743388 DOI: 10.3390/ijms242417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-drug interactions are crucial for understanding drug delivery and cell functions. Jacalin is a suitable molecule for such targeting, as it specifically recognizes the tumor-associated Thomsen-Friedenreich (TF) antigen that is expressed on the glycosylated proteins in cancer cells. The present paper describes the interaction of curcumin and jacalin, a possible carrier molecule for the delivery of antitumor drugs due to its ability to recognize tumor cells. Our results have shown that both steady-state fluorescence and fluorescent labelling of jacalin are two reliable methods to determine jacalin-curcumin interactions. The affinity of jacalin for curcumin is consistently within the micromolar range (using fluorescence and microscale thermophoresis) showing high-affinity binding of the complex. In vitro experiments on triple-negative breast cancer MDA-MB-231 cells indicated inhibition of cell growth after treating with the jacalin-curcumin complex for 48 h. The cell survival fraction was significantly reduced to 50% after combined treatment. In this paper, we report for the first time about the jacalin-curcumin interaction. We quantified this unique biomolecular interaction and gathered additional information on the binding event. We observed that the jacalin-curcumin complex inhibits the proliferation of the triple-negative breast cancer MDA-MB-231 cells.
Collapse
Affiliation(s)
- Lidiya Petrova
- Department of Biology, Medical University—Pleven, “St. Kliment Ohridski” Str. 1, 5800 Pleven, Bulgaria;
| | - Nikolay Gergov
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. George Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Marie Stoup
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (S.Z.); (D.Z.)
| | - Els J. M. Van Damme
- Department Biotechnology, Ghent University, Proeftuinstraat 86, 9000 Gent, Belgium;
| | - Nicolas Lebègue
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Maxime Liberelle
- School of Pharmacy, University Lille, Inserm, CHU Lille, UMR-S 1172–LiNC–Lille Neuroscience and Cognition, F-59000 Lille, France; (M.S.); (N.L.); (M.L.)
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (S.Z.); (D.Z.)
| | - Vanya Bogoeva
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. George Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
EGFR and p38MAPK Contribute to the Apoptotic Effect of the Recombinant Lectin from Tepary Bean (Phaseolus acutifolius) in Colon Cancer Cells. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Previous works showed that a Tepary bean lectin fraction (TBLF) induced apoptosis on colon cancer cells and inhibited early colonic tumorigenesis. One Tepary bean (TB) lectin was expressed in Pichia pastoris (rTBL-1), exhibiting similarities to one native lectin, where its molecular structure and in silico recognition of cancer-type N-glycoconjugates were confirmed. This work aimed to determine whether rTBL-1 retained its bioactive properties and if its apoptotic effect was related to EGFR pathways by studying its cytotoxic effect on colon cancer cells. Similar apoptotic effects of rTBL-1 with respect to TBLF were observed for cleaved PARP-1 and caspase 3, and cell cycle G0/G1 arrest and decreased S phase were observed for both treatments. Apoptosis induction on SW-480 cells was confirmed by testing HA2X, p53 phosphorylation, nuclear fragmentation, and apoptotic bodies. rTBL-1 increased EGFR phosphorylation but also its degradation by the lysosomal route. Phospho-p38 increased in a concentration- and time-dependent manner, matching apoptotic markers, and STAT1 showed activation after rTBL-1 treatment. The results show that part of the rTBL-1 mechanism of action is related to p38 MAPK signaling. Future work will focus further on the target molecules of this recombinant lectin against colon cancer.
Collapse
|
3
|
Oliveira C, Freitas AI, Campos N, Saraiva L, Domingues L. Cytotoxicity of Frutalin on Distinct Cancer Cells Is Independent of Its Glycosylation. Molecules 2021; 26:molecules26164712. [PMID: 34443300 PMCID: PMC8401544 DOI: 10.3390/molecules26164712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5–11.8 μM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53−/−; GI50 of 25.0 ± 3.0 μM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 μM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.
Collapse
Affiliation(s)
- Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Ana Isabel Freitas
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Nair Campos
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (N.C.); (L.S.)
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (N.C.); (L.S.)
| | - Lucília Domingues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- Correspondence: ; Tel.: +351-253-604-405
| |
Collapse
|
4
|
Increased ERK phosphorylation and caveolin-1 expression on K562 human chronic myelogenous leukemia cells by jacalin, a dietary plant lectin. Glycoconj J 2021; 38:361-368. [PMID: 33835346 DOI: 10.1007/s10719-021-09998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The potential antitumor effects of jacalin, the plant lectin that specifically recognizes the tumor-associated Thomsen-Friedenreich antigen has been extensively studied. We had earlier reported jacalin to be mitogenic to K562, the Bcr-Abl expressing erythroleukemia cell line. The dearth of studies highlighting the proliferative effects of jacalin and other lectins motivated us to unveil the mechanism underlying the mitogenic effects of jacalin. Caveolin-1 (cav-1) is an integral membrane protein, known to play a crucial role in cell signaling, lipid transport, and membrane trafficking. The role of cav-1 in tumorigenesis is considered to be controversial as it can suppress as well as promote tumor growth, depending on the cellular context. In the present study, we propose that cav-1 plays the central role in the mitogenic effects of jacalin on the K562 cells. In accordance, the mRNA, as well as protein expression of cav-1 was found to be upregulated in the jacalin-treated K562 cells as compared to the untreated control. Further, jacalin stimulation also increased the phosphorylation of ERK and Akt. The rationale that leads to the initial conjecture about cav-1 was that the sequence of jacalin possesses a cav-1-binding site.
Collapse
|
5
|
Cheong P, Yong Y, Fatima A, Ng S, Tan C, Kong B, Tan N, Rajarajeswaran J, Fung S. Cloning, overexpression, purification, and modeling of a lectin (Rhinocelectin) with antiproliferative activity from Tiger Milk Mushroom,
Lignosus rhinocerus. IUBMB Life 2019; 71:1579-1594. [DOI: 10.1002/iub.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Affiliation(s)
- P.C.H. Cheong
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - Y.S. Yong
- Faculty of Applied SciencesUCSI Heights Kuala Lumpur Malaysia
| | - A. Fatima
- Faculty of PharmacyQuest International University Perak (QUIP) Ipoh Perak Darul Ridzuan Malaysia
| | - S.T. Ng
- Ligno Biotech Sdn. Bhd Taman Perindustrian Balakong Jaya Selangor Malaysia
| | - C.S. Tan
- Ligno Biotech Sdn. Bhd Taman Perindustrian Balakong Jaya Selangor Malaysia
| | - B.H. Kong
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - N.H. Tan
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - J. Rajarajeswaran
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
| | - S.Y. Fung
- Department of Molecular MedicineFaculty of Medicine 50603 Kuala Lumpur Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR)University of Malaya Kuala Lumpur Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR)University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
6
|
Poiroux G, Barre A, van Damme EJM, Benoist H, Rougé P. Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy. Int J Mol Sci 2017; 18:ijms18061232. [PMID: 28598369 PMCID: PMC5486055 DOI: 10.3390/ijms18061232] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022] Open
Abstract
Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin. These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located in the surrounding extended binding-site of the lectins often participate in the binding of more extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another, resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they provide another potential source of molecules adapted to the building of photosensitizer-conjugates allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, Centre de Recherche en Cancérologie de Toulouse, 31037 Toulouse, France.
| | - Annick Barre
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Els J M van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Hervé Benoist
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| | - Pierre Rougé
- Unité Mixte de Recherche, 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers Université Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
7
|
Lavanya V, Ahmed N, Khan MKA, Jamal S. Sustained mitogenic effect on K562 human chronic myelogenous leukemia cells by dietary lectin, jacalin. Glycoconj J 2016; 33:877-886. [DOI: 10.1007/s10719-016-9725-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/01/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
8
|
Danella Polli C, Pereira Ruas L, Chain Veronez L, Herrero Geraldino T, Rossetto de Morais F, Roque-Barreira MC, Pereira-da-Silva G. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2925657. [PMID: 27119077 PMCID: PMC4828542 DOI: 10.1155/2016/2925657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/25/2016] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
Abstract
Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies.
Collapse
Affiliation(s)
- Cláudia Danella Polli
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, FMRP/USP, 14049-900 Ribeirão Preto, SP, Brazil
| | - Luciana Pereira Ruas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, FMRP/USP, 14049-900 Ribeirão Preto, SP, Brazil
| | - Luciana Chain Veronez
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, FMRP/USP, 14049-900 Ribeirão Preto, SP, Brazil
| | - Thais Herrero Geraldino
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, FMRP/USP, 14049-900 Ribeirão Preto, SP, Brazil
| | | | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, FMRP/USP, 14049-900 Ribeirão Preto, SP, Brazil
| | - Gabriela Pereira-da-Silva
- Departamento de Enfermagem Materno-Infantil e Saúde Pública, EERP/USP, 14040-902 Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Oliveira C, Teixeira JA, Domingues L. Recombinant production of plant lectins in microbial systems for biomedical application - the frutalin case study. FRONTIERS IN PLANT SCIENCE 2014; 5:390. [PMID: 25152749 PMCID: PMC4126444 DOI: 10.3389/fpls.2014.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/22/2014] [Indexed: 05/02/2023]
Abstract
Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.
Collapse
Affiliation(s)
| | | | - Lucília Domingues
- *Correspondence: Lucília Domingues, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal e-mail:
| |
Collapse
|
10
|
Oliveira C, Teixeira JA, Domingues L. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools. Crit Rev Biotechnol 2012; 33:66-80. [DOI: 10.3109/07388551.2012.670614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Cytotoxic effects of native and recombinant frutalin, a plant galactose-binding lectin, on HeLa cervical cancer cells. J Biomed Biotechnol 2011; 2011:568932. [PMID: 22131813 PMCID: PMC3206378 DOI: 10.1155/2011/568932] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 02/07/2023] Open
Abstract
Frutalin is the α-D-galactose-binding lectin isolated from breadfruit seeds. Frutalin was obtained from two different sources: native frutalin was purified from its natural origin, and recombinant frutalin was produced and purified from Pichia pastoris. This work aimed to study and compare the effect of native and recombinant frutalin on HeLa cervical cancer cells proliferation and apoptosis. Furthermore, the interaction between frutalin and the HeLa cells was investigated by confocal microscopy. Despite having different carbohydrate-binding affinities, native and recombinant frutalin showed an identical magnitude of cytotoxicity on HeLa cells growth (IC₅₀~100 μg/mL) and equally induced cell apoptosis. The interaction studies showed that both lectins were rapidly internalised and targeted to HeLa cell's nucleus. Altogether, these results indicate that frutalin action is not dependent on its sugar-binding properties. This study provides important information about the bioactivity of frutalin and contributes to the understanding of the plant lectins cytotoxic activity.
Collapse
|
12
|
Jagtap UB, Bapat VA. Artocarpus: a review of its traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:142-166. [PMID: 20380874 DOI: 10.1016/j.jep.2010.03.031] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/19/2010] [Accepted: 03/21/2010] [Indexed: 05/29/2023]
Abstract
The genus Artocarpus (Moraceae) comprises about 50 species of evergreen and deciduous trees. Economically, the genus is of appreciable importance as a source of edible fruit, yield fairly good timber and is widely used in folk medicines. The aim of the present review is to present comprehensive information of the chemical constituents, biological and pharmacological research on Artocarpus which will be presented and critically evaluated. The close connection between traditional and modern sources for ethnopharmacological uses of Artocarpus species, especially for treatment against inflammation, malarial fever, diarrhoea, diabetes and tapeworm infection. Artocarpus species are rich in phenolic compounds including flavonoids, stilbenoids, arylbenzofurons and Jacalin, a lectin. The extracts and metabolites of Artocarpus particularly those from leaves, bark, stem and fruit possess several useful bioactive compounds and recently additional data are available on exploitation of these compounds in the various biological activities including antibacterial, antitubercular, antiviral, antifungal, antiplatelet, antiarthritic, tyrosinase inhibitory and cytotoxicity. Several pharmacological studies of the natural products from Artocarpus have conclusively established their mode of action in treatment of various diseases and other health benefits. Jacalin, a lectin present in seeds of this plant has a wide range of activities. Strong interdisciplinary programmes that incorporate conventional and new technologies will be critical for the future development of Artocarpus as a promising source of medicinal products. In the present review, attempts on the important findings have been made on identification; synthesis and bioactivity of metabolites present in Artocarpus which have been highlighted along with the current trends in research on Artocarpus.
Collapse
Affiliation(s)
- U B Jagtap
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, (MS), India
| | | |
Collapse
|
13
|
Endale M, Kim SD, Lee WM, Kim S, Suk K, Cho JY, Park HJ, Wagley Y, Kim S, Oh JW, Rhee MH. Ischemia induces regulator of G protein signaling 2 (RGS2) protein upregulation and enhances apoptosis in astrocytes. Am J Physiol Cell Physiol 2009; 298:C611-23. [PMID: 20032508 DOI: 10.1152/ajpcell.00517.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulator of G protein signaling (RGS) family members, such as RGS2, interact with Galpha subunits of heterotrimeric G proteins, accelerating the rate of GTP hydrolysis and attenuating the intracellular signaling triggered by the G protein-coupled receptor-ligand interaction. They are also reported to regulate G protein-effector interactions and form multiprotein signaling complexes. Ischemic stress-induced changes in RGS2 expression have been described in astrocytes, and these changes are associated with intracellular signaling cascades, suggesting that RGS2 upregulation may be an important mechanism by which astrocytes may regulate RGS2 function in response to physiological stress. However, information on the functional roles of stress-induced modulation of RGS2 protein expression in astrocyte function is limited. We report the role of ischemic stress in RGS2 protein expression in rat C6 astrocytoma cells and primary mouse astrocytes. A marked increase in RGS2 occurred after ischemic stress induced by chemicals (sodium azide and 2-deoxyglucose) or oxygen-glucose deprivation (OGD, real ischemia). RGS2 mRNA expression was markedly enhanced by 1 h of exposure to chemical ischemia or 6 h of OGD followed by 2 or 6 h of recovery, respectively. This enhanced expression in primary astrocytes and C6 cells was restored to baseline levels after 12 h of recovery from chemically induced ischemic stress or 4-6 h of recovery from OGD. RGS2 protein was also significantly expressed at 12-24 h of recovery from ischemic insult. Ischemia-induced RGS2 upregulation was associated with enhanced apoptosis. It significantly increased annexin V-positive cells, cleaved caspase-3, and enhanced DNA ladder formation and cell cycle arrest. However, a small interfering RNA (siRNA)-mediated RGS2 knockdown reversed the apoptotic cell death associated with ischemia-induced RGS2 upregulation. Upregulated RGS2 was significantly inhibited by SB-203580, a p38 MAPK inhibitor. Rottlerin, a potent inhibitor of PKCdelta, completely abrogated the increased RGS2 expression. We also examine whether ischemia-induced RGS2-mediated apoptosis is affected by siRNA-targeted endogenous PKCdelta downregulation or its phosphorylation. Although RGS2 upregulation was not affected, siRNA transfection significantly suppressed endogenous PKCdelta mRNA and protein expressions. Ischemia-induced PKCdelta phosphorylation and caspase-3 cleavage were dose dependently inhibited by PKCdelta knockdown, and this endogenous PKCdelta suppression reversed ischemia-induced annexin V-positive cells. This study suggests that ischemic stress increases RGS2 expression and that this condition contributes to enhanced apoptosis in C6 cells and primary astrocytes. The signaling it follows may involve PKCdelta and p38 MAPK pathways.
Collapse
Affiliation(s)
- Mehari Endale
- Laboratory of Physiology and Signaling, College of Veterinary Medicine, Kyungpook National Univ., Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Naaby-Hansen S, Herr JC. Heat shock proteins on the human sperm surface. J Reprod Immunol 2009; 84:32-40. [PMID: 19962198 DOI: 10.1016/j.jri.2009.09.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/28/2009] [Accepted: 09/10/2009] [Indexed: 01/17/2023]
Abstract
The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure.
Collapse
Affiliation(s)
- Soren Naaby-Hansen
- Department of Clinical Immunology, Aalborg Sygehus, Aarhus University Hospital, Denmark.
| | | |
Collapse
|
15
|
Ahmed N, Pany S, Rahman A, Srivastava SS, Sneh A, Krishnasastry MV. Modulation of PP2A activity by Jacalin: is it through caveolae and ER chaperones? Glycoconj J 2009; 27:723-34. [PMID: 19823931 DOI: 10.1007/s10719-009-9258-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 03/08/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Plant lectins have been reported to affect the proliferation of different human cancer cell line probably by binding to the specific carbohydrate moieties. In the present study, Badan labeled single cysteine mutant (present in the caveolin-1 binding motif) of jacalin (rJacalin) was found to penetrate the target membrane, indicating a protein-protein or protein-membrane interaction apart from its primary mode of binding i.e. protein-carbohydrate interaction. Further, Jacalin treatment has resulted in the movement of the GFP-Caveolin-1 predominantly at the cell-cell contact region with much restricted dynamics. Jacalin treatment has resulted in the perinuclear accumulation of PP2A and dissociation of the PHAP1/PP2A complex. PP2A was found to act as a negative regulator of ERK signaling and a significant decrease in the phosphorylation level of MEK and AKT (T308) in A431. In addition, we have also identified several ER resident proteins including molecular chaperones like ORP150, Hsp70, Grp78, BiP of A431 cells, which were bound to the Jacalin-sepharose column. Among various ER chaperones that were identified, ORP150 was found to present on the cell surface of A431 cells.
Collapse
Affiliation(s)
- Neesar Ahmed
- National Centre for Cell Science, Ganeshkhind Road, University of Pune Campus, Pune, 411007, India
| | | | | | | | | | | |
Collapse
|
16
|
Oliveira C, Costa S, Teixeira JA, Domingues L. cDNA Cloning and Functional Expression of the α-d-Galactose-Binding Lectin Frutalin in Escherichia coli. Mol Biotechnol 2009; 43:212-20. [DOI: 10.1007/s12033-009-9191-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/26/2009] [Indexed: 11/25/2022]
|
17
|
Lee HZ, Liu WZ, Hsieh WT, Tang FY, Chung JG, Leung HWC. Oxidative stress involvement in Physalis angulata-induced apoptosis in human oral cancer cells. Food Chem Toxicol 2009; 47:561-70. [DOI: 10.1016/j.fct.2008.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/15/2008] [Accepted: 12/16/2008] [Indexed: 12/30/2022]
|
18
|
Kim DG, Min MK, Ahn SC, Kim JK, Kong IS. Expression of a fusion protein containing human epidermal growth factor and the collagen-binding domain of Vibrio mimicus metalloprotease. Biotechnol Lett 2008; 31:259-64. [PMID: 18931974 DOI: 10.1007/s10529-008-9863-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/24/2008] [Indexed: 11/27/2022]
Abstract
Human epidermal growth factor (hEGF) is a polypeptide of 53 amino acids, is an important autocrine/paracrine factor in the human body, and is used in the pharmaceutical and cosmetics industries. We constructed a fusion hEGF protein with a collagen-binding domain (CBD) composed of 33 amino acids from Vibrio mimicus metalloprotease (VMCBD). The CBD segment of the metalloprotease was fused at the C terminus of the hEGF protein. The recombinant fusion protein was expressed in Escherichia coli and purified. The purified hEGF protein promoted greater growth of human/A-431 cells than did the control hEGF. The fusion EGF protein also showed collagen-binding activity with type I collagen. In contrast, hEGF did not bind to type I collagen. These results suggest that recombinant hEGF protein fused to VMCBD may be able to remain for a long period at injured epidermal tissue acting as a healing agent.
Collapse
Affiliation(s)
- Dong-Gyun Kim
- Department of Biotechnology, Pukyong National University, Busan, 608-737, Korea
| | | | | | | | | |
Collapse
|
19
|
Phosphorylation of caveolin-1 in bovine rod outer segments in vitro by an endogenous tyrosine kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 613:335-41. [PMID: 18188962 DOI: 10.1007/978-0-387-74904-4_39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|