1
|
Patil K, Johnston E, Novack J, Wallace G, Lin M, Pai SB. Multifaceted impact of HIV inhibitor dapivirine on triple negative breast cancer cells reveals potential entities as targets for novel therapy. Sci Rep 2024; 14:30103. [PMID: 39627279 PMCID: PMC11615302 DOI: 10.1038/s41598-024-79789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Many breast cancers originate from the cells lining the milk duct and some become invasive. Breast cancer lacking estrogen, progesterone receptors (ER-, PR-) and epidermal growth factor receptor 2 (HER2-) amplification, termed "Triple negative" (TNBC) is reported to frequently affect Black women and younger women. TNBC is an invasive ductal carcinoma with limited treatment options. To this end, we opted to investigate drugs that could be repurposed because they offer advantages in bringing effective treatments faster to the clinic. We chose to study the effect of the drug, dapivirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV because it could be detected in the breast milk of lactating women when treated for HIV and the drug could potentially target the cancer. Here we show the potent impact of dapivirine on MDA-MB-231 TNBC cells, while NNRTI like nevirapine showed marginal effects. When dapivirine was tested on other breast cell lines, MCF-7 and MCF 10A, the inhibition was at higher concentrations. Molecular studies with dapivirine in TNBC cells, revealed an increase in reactive oxygen species (ROS), apoptotic cells, and activation of caspases. Importantly, protein profiling and STRING analysis revealed deregulation of the key molecule, PCNA and impact on pivotal cell signaling circuits including extracellular matrix (ECM), angiogenesis, cell adhesion, and immunomodulation. Of note, is its potential effect on stem-like cells due to downregulation of the basic transcription factor 3 (BTF3) and proteasome activator complex subunit 3; the latter affecting their dependence on the proteasome pathway. Taken together, dapivirine exhibits the potential to be considered as a repurposed drug for TNBC as monotherapy/combination therapy. Notably, it could also potentially be a treatment for individuals with dual ailments, such as HIV and TNBC, if the clinical outcomes with dapivirine for TNBC become favorable.
Collapse
Affiliation(s)
- Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Elizabeth Johnston
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Joseph Novack
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Garrett Wallace
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Michelle Lin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
2
|
Albakova Z, Mangasarova Y, Albakov A, Gorenkova L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front Oncol 2022; 12:829520. [PMID: 35127545 PMCID: PMC8814359 DOI: 10.3389/fonc.2022.829520] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
HSP70 and HSP90 are two powerful chaperone machineries involved in survival and proliferation of tumor cells. Residing in various cellular compartments, HSP70 and HSP90 perform specific functions. Concurrently, HSP70 and HSP90 homologs may also translocate from their primary site under various stress conditions. Herein, we address the current literature on the role of HSP70 and HSP90 chaperone networks in cancer. The goal is to provide a comprehensive review on the functions of cytosolic, mitochondrial and endoplasmic reticulum HSP70 and HSP90 homologs in cancer. Given that high expression of HSP70 and HSP90 enhances tumor development and associates with tumor aggressiveness, further understanding of HSP70 and HSP90 chaperone networks may provide clues for the discoveries of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Zarema Albakova,
| | | | | | | |
Collapse
|
3
|
Yan LR, Shen SX, Wang A, Ding HX, Liu YN, Yuan Y, Xu Q. Comprehensive Pan-Cancer Analysis of Heat Shock Protein 110, 90, 70, and 60 Families. Front Mol Biosci 2021; 8:726244. [PMID: 34712697 PMCID: PMC8546173 DOI: 10.3389/fmolb.2021.726244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Here we carried out a panoramic analysis of the expression and prognosis of HSP110, HSP90, HSP70, and HSP60 families in 33 types of cancer, with the aim of deepening the systematic understanding of heat shock proteins (HSPs) in cancer. Materials and Methods: Next-generation sequencing data of multiple tumors were downloaded from TCGA, CCLE and Oncomine databases. RStudio 3.6.1 was used to analyze HSP110, HSP90, HSP70 and HSP60 families based on their expression in 33 types of cancer. The validations in vivo (stomach adenocarcinoma and colon adenocarcinoma tissues) were performed by qRT-PCR. Results: HSPs were differentially expressed in different cancers. The results revealed mainly positive correlations among the expressions of HSPs in different cancers. Expressions of HSP family members were generally associated with poor prognosis in respiratory, digestive, urinary and reproductive system tumors and associated with good prognosis in cholangiocarcinoma, pheochromocytoma and paraganglioma. TCGA mutation analysis showed that HSP gene mutation rate in cancers was 0–23%. CCLE mutation analysis indicated that HSP gene mutation rate in 828 cell lines from 15 tumors was 0–17%. CNV analysis revealed that HSPs have different degrees of gene amplifications and deletions in cancers. Gene mutations of 15 HSPs influenced their protein expressions in different cancers. Copy number amplifications and deletions of 22 HSPs also impacted protein expression levels in pan-cancer. HSP gene mutation was generally a poor prognosis factor in cancers, except for uterine corpus endometrial carcinoma. CNVs in 14 HSPs showed varying influences on survival status in different cancers. HSPs may be involved in the activation and inhibition of multiple cancer-related pathways. HSP expressions were closely correlated with 22 immune cell infiltrations in different cancers. The qRT-PCR validation results in vivo showed that HSPA2 was down-regulated in stomach adenocarcinoma and colon adenocarcinoma; HSPA7 and HSPA1A also were down-regulated in colon adenocarcinoma. HSPA2-HSPA7 (r = 0.031, p = 0.009) and HSPA1A-HSPA7 (r = 0.516, p < 0.001) were positive correlation in colon adenocarcinoma. Conclusion: These analysis and validation results show that HSP families play an important role in the occurrence and development of various tumors and are potential tumor diagnostic and prognostic biomarkers as well as anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Shi-Xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
4
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
5
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
6
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
7
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
8
|
Shevtsov M, Stangl S, Nikolaev B, Yakovleva L, Marchenko Y, Tagaeva R, Sievert W, Pitkin E, Mazur A, Tolstoy P, Galibin O, Ryzhov V, Steiger K, Smirnov O, Khachatryan W, Chester K, Multhoff G. Granzyme B Functionalized Nanoparticles Targeting Membrane Hsp70-Positive Tumors for Multimodal Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900205. [PMID: 30828968 DOI: 10.1002/smll.201900205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/11/2019] [Indexed: 05/20/2023]
Abstract
Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky ave., 4, St. Petersburg, 194064, Russia
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Stefan Stangl
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Boris Nikolaev
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ludmila Yakovleva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Yaroslav Marchenko
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Ruslana Tagaeva
- Research Institute of Highly Pure Biopreparations, Pudozhskaya str. 12, St. Petersburg, 191014, Russia
| | - Wolfgang Sievert
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Walnut Street 3730, Philadelphia, PA, 19104, USA
| | - Anton Mazur
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Peter Tolstoy
- Saint Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia
| | - Oleg Galibin
- First Pavlov State Medical University of St. Petersburg, L'va Tolstogo str. 6/8, St. Petersburg, 197022, Russia
| | - Vyacheslav Ryzhov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Trogerstr. 18, 81675, Munich, Germany
| | - Oleg Smirnov
- NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia
| | - William Khachatryan
- Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, Mayakovskogo str. 12, St. Petersburg, 191104, Russia
| | - Kerry Chester
- UCL Cancer Institute, University College London, 72 Huntley Street, WC1E 6DD, London, UK
| | - Gabriele Multhoff
- Center for Translational Cancer Research Technische Universität München (TranslaTUM), Radiation Immuno-Oncology group, Klinikum rechts der Isar, Einsteinstr. 25, 81675, Munich, Germany
| |
Collapse
|
9
|
Dai YJ, Qiu YB, Jiang R, Xu M, Liao LY, Chen GG, Liu ZM. Concomitant high expression of ERα36, GRP78 and GRP94 is associated with aggressive papillary thyroid cancer behavior. Cell Oncol (Dordr) 2018; 41:269-282. [PMID: 29368272 DOI: 10.1007/s13402-017-0368-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Papillary thyroid cancer (PTC) is more common in women than in men. It has been suggested that estrogen may be involved in its development, as has previously been shown for breast, endometrial and ovarian cancer. The purpose of this study was to assess correlations between the expression of the estrogen receptor alpha36 (ERα36) and the glucose regulated proteins GRP78 and GRP94 (chaperones involved in glycoprotein folding) and various PTC clinicopathological features, as well as to evaluate the potential usefulness of these three potential oncogenic proteins in the prediction of aggressive PTC behavior. METHODS ERα36, GRP78 and GRP94 protein expression in 218 primary PTC tissues and PTC-derived BCPAP cells was examined using immunohistochemistry, Western blotting and immunocytochemistry. The proliferative, invasive and migrative capacities of BCPAP cells in which the respective genes were either exogenously over-expressed or silenced were assessed using BrdU incorporation and Transwell assays, respectively. RESULTS We found that ERα36, GRP78 and GRP94 protein expression was upregulated in the primary PTC tissues tested. We also found that ERα36, GRP78 and GRP94 expression modulation affected the proliferation, invasion and migration of PTC-derived BCPAP cells. A positive correlation and a positive feedback loop were noted between ERα36, GRP78 and GRP94 protein expression in the primary PTC tissues and in BCPAP cells, respectively. High ERα36 expression in combination with a high GRP78/ GRP94 expression was found to have a stronger correlation with extrathyroid extension (ETE), lymph node metastasis (LNM), distant metastasis (DM) and high TNM stage than high ERα36 expression in combination with either high GRP78 or high GRP94 expression (p = 0.028 for ETE, p = 0.002 for DM and p ≤ 0.001 for LNM and high TNM stage) or high ERα36 expression alone (p < 0.001 for ETE, LNM, DM and high TNM stage). CONCLUSIONS From our data we conclude that a concomitant high expression of ERα36, GRP78 and GRP94 is strongly associated with aggressive PTC behavior and may be used as a predictor for ETE, LNM, DM and high TNM stage.
Collapse
Affiliation(s)
- Yu-Jie Dai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yi-Bo Qiu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong Jiang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
10
|
Griffiths SG, Cormier MT, Clayton A, Doucette AA. Differential Proteome Analysis of Extracellular Vesicles from Breast Cancer Cell Lines by Chaperone Affinity Enrichment. Proteomes 2017; 5:E25. [PMID: 28991197 PMCID: PMC5748560 DOI: 10.3390/proteomes5040025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The complexity of human tissue fluid precludes timely identification of cancer biomarkers by immunoassay or mass spectrometry. An increasingly attractive strategy is to primarily enrich extracellular vesicles (EVs) released from cancer cells in an accelerated manner compared to normal cells. The Vn96 peptide was herein employed to recover a subset of EVs released into the media from cellular models of breast cancer. Vn96 has affinity for heat shock proteins (HSPs) decorating the surface of EVs. Reflecting their cells of origin, cancer EVs displayed discrete differences from those of normal phenotype. GELFrEE LC/MS identified an extensive proteome from all three sources of EVs, the vast majority having been previously reported in the ExoCarta database. Pathway analysis of the Vn96-affinity proteome unequivocally distinguished EVs from tumorigenic cell lines (SKBR3 and MCF-7) relative to a non-tumorigenic source (MCF-10a), particularly with regard to altered metabolic enzymes, signaling, and chaperone proteins. The protein data sets provide valuable information from material shed by cultured cells. It is probable that a vast amount of biomarker identities may be collected from established and primary cell cultures using the approaches described here.
Collapse
Affiliation(s)
| | | | - Aled Clayton
- School of Medicine, Cardiff University, Wales, CF14 4XN, UK.
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
Hong F, Mohammad Rachidi S, Lundgren D, Han D, Huang X, Zhao H, Kimura Y, Hirano H, Ohara O, Udono H, Meng S, Liu B, Li Z. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90. PLoS One 2017; 12:e0169260. [PMID: 28056051 PMCID: PMC5215799 DOI: 10.1371/journal.pone.0169260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90) for folding. However, the interactors of its endoplasmic reticulum (ER) paralogue (gp96, Grp94 and HSP90b1) has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs) and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.
Collapse
Affiliation(s)
- Feng Hong
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Saleh Mohammad Rachidi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Debbie Lundgren
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David Han
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Xiu Huang
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Yayoi Kimura
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hisashi Hirano
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Osamu Ohara
- Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Heichiiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bei Liu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| | - Zihai Li
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| |
Collapse
|
12
|
Hou J, Deng M, Li X, Liu W, Chu X, Wang J, Chen F, Meng S. Chaperone gp96 mediates ER-α36 cell membrane expression. Oncotarget 2016; 6:31857-67. [PMID: 26396174 PMCID: PMC4741645 DOI: 10.18632/oncotarget.5273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022] Open
Abstract
ER (estrogen receptor)-α36, a variant of human ERα, activates non-genomic cell signaling pathways. ER-α36 on the cell membrane plays a role in breast cancer growth and development, and contributes to tamoxifen resistance. However, it is not understood how cell membrane expression of ER-α36 is regulated. In this study, we investigated the role of cell membrane glycoprotein 96 (mgp96) in the regulation of ER-α36 expression and signaling. We found that the C-terminal domain of mgp96 directly interacts with ER-α36 on the cell membrane of breast tumor cells. This interaction stabilizes the ER-α36 protein, thereby increasing its signaling, which, in turn, increases tumor cell growth and invasion. Moreover, targeting mgp96 with siRNA or monoclonal antibody (mAb) blocks the mgp96-ER-α36 interaction and inhibits breast cancer growth and invasion both in vitro and in vivo. These results provide insights into the modulation of cell membrane ER-α36 expression and suggest that mgp96 could be a potential therapeutic target for ER-α36-overexpressing breast cancer.
Collapse
Affiliation(s)
- Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Xiaoyu Chu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| | - Jing Wang
- Shenogen Pharma Group, Changping District, Beijing 102206, P.R. China
| | - Feng Chen
- Shenogen Pharma Group, Changping District, Beijing 102206, P.R. China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, P.R. China
| |
Collapse
|
13
|
Iqbal MK, Zargar MA, Mudassar S, Lone GN, Yaseen SB, Andrabi KI. Expression Profiling and Cellular Localization of Stress Responsive Proteins in Squamous Cell Carcinoma of Human Esophagus. Cancer Invest 2016; 34:237-45. [PMID: 27351523 DOI: 10.1080/07357907.2016.1178760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The ambiguity in relating expression dynamics of stress response proteins with human esophageal squamous cell carcinoma (ESCC) has sidelined the potential of stress proteins as therapeutic targets. This study was an attempt to unequivocally relate the stress protein dynamics with stage and propensity of ESCC. METHODS Surgically resected tumor and adjacent histologically normal tissue from 46 patients with esophageal squamous cell carcinoma were investigated in the present study. Expression of HSPs was analyzed by Western blotting and immunohistochemistry. RESULTS HSP expression was observed in all 46 cases both in adjacent normal and tumor tissues. The expression and the localization of individual HSP showed no significant correlation with depth of invasion, tumor grade, and pathological stage of the tumor. HSP 27 was the most abundant protein followed by HSP 90 and HSP 70. The HSP 27 localized exclusively in the cytoplasm of adjacent normal and tumor cells. HSP 70 showed dispersed expression with predominating nuclear localization in both normal and tumor tissue cells and HSP 90 was localized in cytoplasm of adjacent normal and in nucleus of tumor cells in majority of the cases. CONCLUSION Our data advocate lack of relationship between stress protein expression and the progression of ESCC. The data renew the prospect of anti-HSP drugs as therapeutic resources in light of the possibility that their use would continue to sensitize cancer cells towards drug induced apoptosis for tumor regression.
Collapse
Affiliation(s)
| | | | - Syed Mudassar
- b Department of Biochemistry , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | - Ghulam Nabi Lone
- c Department of Cardio Vascular Thoracic Surgery , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | - Syed Besina Yaseen
- d Department of Pathology , Sher-i-Kashmir Institute of Medical Sciences , Srinagar , India
| | - Khurshid Iqbal Andrabi
- e Department of Biotechnology , Science Block , University of Kashmir , Srinagar , India
| |
Collapse
|
14
|
Wu BX, Hong F, Zhang Y, Ansa-Addo E, Li Z. GRP94/gp96 in Cancer: Biology, Structure, Immunology, and Drug Development. Adv Cancer Res 2015; 129:165-90. [PMID: 26916005 DOI: 10.1016/bs.acr.2015.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As an endoplasmic reticulum heat-shock protein 90 (HSP90) paralog, GRP94 (glucose-regulated protein 94)/gp96 (hereafter referred to as GRP94) has been shown to be an essential master chaperone for multiple receptors including Toll-like receptors, Wnt coreceptors, and integrins. Clinically, expression of GRP94 correlates with advanced stage and poor survival in a variety of cancers. Recent preclinical studies have also revealed that GRP94 expression is closely linked to cancer growth and metastasis in melanoma, ovarian cancer, multiple myeloma, lung cancer, and inflammation-associated colon cancer. Thus, GRP94 is an attractive therapeutic target in a number of malignancies. The chaperone function of GRP94 depends on its ATPase domain, which is structurally distinct from HSP90, allowing design of highly selective GRP94-targeted inhibitors. In this chapter, we discuss the biology and structure-function relationship of GRP94. We also summarize the immunological roles of GRP94 based on the studies documented over the last two decades, as these pertain to tumorigenesis and cancer progression. Finally, the structure-based rationale for the design of selective small-molecule inhibitors of GRP94 and their potential application in the treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Bill X Wu
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Feng Hong
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongliang Zhang
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ephraim Ansa-Addo
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Hollings Cancer Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
15
|
Plasma membrane gp96 enhances invasion and metastatic potential of liver cancer via regulation of uPAR. Mol Oncol 2015; 9:1312-23. [PMID: 25841765 DOI: 10.1016/j.molonc.2015.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/28/2022] Open
Abstract
Targeted therapy is currently under intensive investigation due to the resistance of liver cancer to cytotoxic chemotherapies. Dissecting the molecular events that drive the progression of liver cancer and defining specific targets are urgently needed to develop efficient tailored therapies. Cell membrane gp96 (mgp96) has been implicated in tumor growth and malignancy. Here, we explored the functional and clinical relevance of mgp96 in liver cancer. We found that elevated mgp96 abundance was associated with tumor metastasis and recurrence in patients with primary liver tumors. Decreased KDELR1 levels in hepatoma cells contribute to cell membrane translocation of the normally ER-resident gp96. Urokinase-type plasminogen activator receptor (uPAR) was identified as a mgp96 client protein, and mgp96 stabilized uPAR protein. Our clinical results proved that elevated mgp96 abundance is positively correlated with uPAR expression levels in liver tumors. We further provided evidence that targeting mgp96 with siRNA or a specific mAb that blocked the mgp96-uPAR interaction led to inhibited cell growth, survival, and invasion in vitro, as well as the suppression of liver tumor growth and metastasis in vivo. mgp96 promotes liver cancer progression through increasing the protein stability and signaling of uPAR, and may be a new promising target for suppressing uPAR-mediated tumor growth and metastasis in liver cancer.
Collapse
|
16
|
Li X, Sun L, Hou J, Gui M, Ying J, Zhao H, Lv N, Meng S. Cell membrane gp96 facilitates HER2 dimerization and serves as a novel target in breast cancer. Int J Cancer 2015; 137:512-24. [PMID: 25546612 DOI: 10.1002/ijc.29405] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/17/2014] [Indexed: 02/01/2023]
Abstract
HER2 receptor dimerization is a critical step in the HER2 activation process. Here, we demonstrated that heat shock protein gp96 on cell membrane interacts with HER2, facilitates HER2 dimerization and promotes cell proliferation. Cell membrane gp96 levels were observed to correlate with HER2 phosphorylation in primary breast tumors. Finally, we provide evidence that targeting gp96 with a specific monoclonal antibody led to decreased cell growth and increased apoptosis in vitro, and suppression of tumor growth in vivo. Our work represents a new therapeutic strategy for inhibiting HER2 signaling in cancer.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lu Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Mingming Gui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianming Ying
- Chinese Academy of Medical Sciences, Cancer Institute and Hospital, Beijing, China
| | - Hong Zhao
- Chinese Academy of Medical Sciences, Cancer Institute and Hospital, Beijing, China
| | - Ning Lv
- Chinese Academy of Medical Sciences, Cancer Institute and Hospital, Beijing, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
17
|
Graner MW, Lillehei KO, Katsanis E. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines. Front Oncol 2015; 4:379. [PMID: 25610811 PMCID: PMC4285071 DOI: 10.3389/fonc.2014.00379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I) molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat-shock protein/chaperone protein-based cancer vaccines called “chaperone-rich cell lysate” (CRCL) that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically resected tumor samples. Of note, these preparations contained at least 10 ER chaperones and a number of other residents, along with many other chaperones/heat-shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Kevin O Lillehei
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado School of Medicine , Aurora, CO , USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona , Tucson, AZ , USA
| |
Collapse
|
18
|
Bhagwat SR, Redij T, Phalnikar K, Nayak S, Iyer S, Gadkar S, Chaudhari U, Kholkute SD, Sachdeva G. Cell surfactomes of two endometrial epithelial cell lines that differ in their adhesiveness to embryonic cells. Mol Reprod Dev 2014; 81:326-40. [DOI: 10.1002/mrd.22301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Sonali R. Bhagwat
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Tejashree Redij
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Kruttika Phalnikar
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sumeet Nayak
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Swati Iyer
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sushama Gadkar
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Uddhav Chaudhari
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Sanjeeva D. Kholkute
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| | - Geetanjali Sachdeva
- Primate Biology Laboratory; National Institute for Research in Reproductive Health, Indian Council of Medical Research; Mumbai India
| |
Collapse
|
19
|
Huang QQ, Koessler RE, Birkett R, Dorfleutner A, Perlman H, Haines GK, Stehlik C, Nicchitta CV, Pope RM. Glycoprotein 96 perpetuates the persistent inflammation of rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 64:3638-48. [PMID: 22777994 DOI: 10.1002/art.34610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The mechanisms that contribute to the persistent activation of macrophages in rheumatoid arthritis (RA) are incompletely understood. The aim of this study was to determine the contribution of endogenous gp96 in Toll-like receptor (TLR)-mediated macrophage activation in RA. METHODS RA synovial fluid was used to activate macrophages and HEK-TLR-2 and HEK-TLR-4 cells. Neutralizing antibodies to TLR-2, TLR-4, and gp96 were used to inhibit activation. RA synovial fluid macrophages were isolated by CD14 negative selection. Cell activation was measured by the expression of tumor necrosis factor α (TNFα) or interleukin-8 messenger RNA. Arthritis was induced in mice by K/BxN serum transfer. The expression of gp96 was determined by immunoblot analysis, enzyme-linked immunosorbent assay, and immunohistochemistry. Arthritis was treated with neutralizing anti-gp96 antiserum or control serum. RESULTS RA synovial fluid induced the activation of macrophages and HEK-TLR-2 and HEK-TLR-4 cells. RA synovial fluid-induced macrophage and HEK-TLR-2 activation was suppressed by neutralizing anti-gp96 antibodies only in the presence of high (>800 ng/ml) rather than low (<400 ng/ml) concentrations of gp96. Neutralization of RA synovial fluid macrophage cell surface gp96 inhibited the constitutive expression of TNFα. Supporting the role of gp96 in RA, joint tissue gp96 expression was induced in mice with the K/BxN serum-induced arthritis, and neutralizing antibodies to gp96 ameliorated joint inflammation, as determined by clinical and histologic examination. CONCLUSION These observations support the notion that gp96 plays a role as an endogenous TLR-2 ligand in RA and identify the TLR-2 pathway as a therapeutic target.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Karhemo PR, Ravela S, Laakso M, Ritamo I, Tatti O, Mäkinen S, Goodison S, Stenman UH, Hölttä E, Hautaniemi S, Valmu L, Lehti K, Laakkonen P. An optimized isolation of biotinylated cell surface proteins reveals novel players in cancer metastasis. J Proteomics 2012; 77:87-100. [PMID: 22813880 DOI: 10.1016/j.jprot.2012.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 01/15/2023]
Abstract
Details of metastasis, the deadliest aspect of cancer, are unclear. Cell surface proteins play central roles in adhesive contacts between the tumor cell and the stroma during metastasis. We optimized a fast, small-scale isolation of biotinylated cell surface proteins to reveal novel metastasis-associated players from an isogenic pair of human MDA-MB-435 cancer cells with opposite metastatic phenotypes. Isolated proteins were trypsin digested and analyzed using LC-MS/MS followed by quantitation with the Progenesis LC-MS software. Sixteen proteins displayed over twofold expression differences between the metastatic and non-metastatic cells. Interestingly, overexpression of most of them (14/16) in the metastatic cells indicates a gain of novel surface protein profile as compared to the non-metastatic ones. All five validated, differentially expressed proteins showed higher expression in the metastatic cells in culture, and four of these were further validated in vivo. Moreover, we analyzed expression of two of the identified proteins, CD109 and ITGA6 in 3-dimensional cultures of six melanoma cell lines. Both proteins marked the surface of cells derived from melanoma metastasis over cells derived from primary melanoma. The unbiased identification and validation of both known and novel metastasis-associated proteins indicate a reliable approach for the identification of differentially expressed surface proteins.
Collapse
Affiliation(s)
- Piia-Riitta Karhemo
- Research Programs Unit, Molecular Cancer Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hong C, Qiu X, Li Y, Huang Q, Zhong Z, Zhang Y, Liu X, Sun L, Lv P, Gao XM. Functional analysis of recombinant calreticulin fragment 39-272: implications for immunobiological activities of calreticulin in health and disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:4561-9. [PMID: 20855873 DOI: 10.4049/jimmunol.1000536] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although calreticulin (CRT) is a major Ca(2+)-binding luminal resident protein, it can also appear on the surface of various types of cells and it functions as an immunopotentiating molecule. However, molecular mechanisms underlying the potent immunobiological activity of cell surface CRT are still unclear. In the present study, a recombinant fragment (rCRT/39-272) covering the lectin-like N domain and partial P domain of murine CRT has been expressed in Escherichia coli. The affinity-purified rCRT/39-272 assembles into homodimers and oligomers in solution and exhibits high binding affinity to various glycans, including carrageenan, alginic acids, and hyaluronic acids. Functionally, rCRT/39-272 is capable of driving the activation and maturation of B cells and cytokine production by macrophages in a TLR-4-dependent manner in vitro. It specifically binds recombinant mouse CD14, but not BAFFR and CD40. It is also able to trigger Ig class switching by B cells in the absence of T cell help both in vitro and in vivo. Furthermore, this fragment of CRT exhibits strong adjuvanticity when conjugated to polysaccharides or expressed as part of a fusion protein. Soluble CRT can be detected in the sera of patients with rheumatoid arthritis or systemic lupus erythematosus, but not in healthy subjects. We argue that CRT, either on the membrane surface of cells or in soluble form, is a potent stimulatory molecule to B cells and macrophages via the TLR-4/CD14 pathway and plays important roles in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Chao Hong
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu MH, Wang MC, Gao N, Li Y, Jiang WG. Expression and clinical significance of glucose regulated proteins GRP78 and GRP94 in human colon cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Moyes KM, Drackley JK, Morin DE, Rodriguez-Zas SL, Everts RE, Lewin HA, Loor JJ. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response. Physiol Genomics 2010; 41:161-70. [PMID: 20103698 DOI: 10.1152/physiolgenomics.00197.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5) to better understand the mechanisms associated with NEB and risk of mastitis during the transition period. The NEB cows were feed-restricted to 60% of calculated net energy for lactation requirements for 7 days, and cows assigned to PEB were fed the same diet for ad libitum intake. Five days after feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis (O140J). At 20 h postinoculation, S. uberis-infected mammary quarters from all cows were biopsied for RNA extraction. Negative energy balance resulted in 287 differentially expressed genes (DEG; false discovery rate ≤ 0.05), with 86 DEG upregulated and 201 DEG downregulated in NEB vs. PEB. Canonical pathways most affected by NEB were IL-8 signaling (10 genes), glucocorticoid receptor signaling (13), and NRF2-mediated oxidative stress response (10). Among the genes differentially expressed by NEB, cell growth and proliferation (48) and cellular development (36) were the most enriched functions. Regarding immune response, HLA-A was upregulated due to NEB, whereas the majority of genes involved in immune response were downregulated (e.g., AKT1, IRAK1, MAPK9, and TRAF6). This study provided new avenues for investigation into the mechanisms relating NEB and susceptibility to mastitis in lactating dairy cows.
Collapse
Affiliation(s)
- Kasey M Moyes
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Nirdé P, Derocq D, Maynadier M, Chambon M, Basile I, Gary-Bobo M, Garcia M. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 2009; 29:117-27. [PMID: 19802014 DOI: 10.1038/onc.2009.311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Earlier studies indicated that density-arrested cancer cells released an unidentified growth inhibitor whose secretion was prevented by overexpression of the lysosomal protease cathepsin D (cath D). In this study, this growth inhibitor was purified by affinity chromatography and identified as the heat shock cognate 70 protein (hsc70) based on its peptide microsequencing and specific antibody recognition. Among intracellular proteins, including other heat shock proteins, only constitutive hsc70 was secreted in response to the high-cell density. Moreover, hsc70 secretion from cancer cells was generated by serum deprivation, whereas its cellular concentration did not change. Prevention of Hsc70 secretion by cath D overexpression was associated with the formation of multilayer cell cultures, thus indicating a loss of contact inhibition. In addition, we showed that supplementing the culture medium with purified hsc70 inhibited cell proliferation in the nanomolar range. Conversely, removal of this extracellular hsc70 from the medium by either retention on ADP-agarose or competition at the Hsc70 binding site restored cell proliferation. Hsc70 appears active in human breast cancer cells and hypersecreted by direct cath D inhibition. These results suggest a new role of this secreted hsc70 chaperone in cell proliferation that might account for the higher tumor growth of cancer cells overexpressing cath D.
Collapse
Affiliation(s)
- P Nirdé
- IRCM, institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Bottoni P, Giardina B, Scatena R. Proteomic profiling of heat shock proteins: An emerging molecular approach with direct pathophysiological and clinical implications. Proteomics Clin Appl 2009; 3:636-53. [DOI: 10.1002/prca.200800195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M, Herrmann K, Schrattenholz A, Cahill MA, Schwaiger M, Hofler H, Wester HJ. Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin Cancer Res 2009; 14:8279-87. [PMID: 19088045 DOI: 10.1158/1078-0432.ccr-08-0679] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify pretherapeutic predictive biomarkers in tumor biopsies of patients with locally advanced esophageal adenocarcinomas treated with neoadjuvant chemotherapy, we used an explorative proteomic approach to correlate pretherapeutic protein expression profiles with tumor response to neoadjuvant chemotherapy. EXPERIMENTAL DESIGN Thirty-four patients with locally advanced esophageal adenocarcinomas who received neoadjuvant platin/5-fluorouracil-based chemotherapy before surgical resection were enrolled in this study. Response to chemotherapy was determined (a) by the amount of decline of [18F]fluorodeoxyglucose tumor uptake 2 weeks after the start of chemotherapy measured by positron emission tomography and (b) by histopathologic evaluation of tumor regression after surgical resection. Explorative quantitative and qualitative protein expression analysis was done through a quantitative differential protein expression analysis that used dual-isotope radioactive labeling of protein extracts. Selected identified biomarkers were validated by immunohistochemistry and quantitative real time reverse transcription-PCR. RESULTS Proteomic analysis revealed four cellular stress response-associated proteins [heat-shock protein (HSP) 27, HSP60, glucose-regulated protein (GRP) 94, GRP78] and a number of cytoskeletal proteins whose pretherapeutic abundance was significantly different (P < 0.001) between responders and nonresponders. Immunohistochemistry and gene expression analysis confirmed these data, showing a significant association between low HSP27 expression and nonresponse to neoadjuvant chemotherapy (P = 0.049 and P = 0.032, respectively). CONCLUSIONS Albeit preliminary, our encouraging data suggest that protein expression profiling may distinguish cancers with a different response to chemotherapy. Our results suggest that response to chemotherapy may be related to a different activation of stress response and inflammatory biology in general. Moreover, the potential of HSPs and GRPs as biomarkers of chemotherapy response warrants further validation.
Collapse
Affiliation(s)
- Rupert Langer
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ran Y, Hu H, Hu D, Zhou Z, Sun Y, Yu L, Sun L, Pan J, Liu J, Liu T, Yang Z. Derlin-1 is overexpressed on the tumor cell surface and enables antibody-mediated tumor targeting therapy. Clin Cancer Res 2008; 14:6538-45. [PMID: 18927294 DOI: 10.1158/1078-0432.ccr-08-0476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor targeting therapy is one of the most promising strategies for anticancer treatment. Derlin-1 has been reported to participate in misfolded protein dislocation and integrates into the endoplasmic reticulum (ER) membrane to survey for such protein aggregates. We elucidate herein that Derlin-1 can leak to the plasmalemma from the ER in tumor cells and may have clinical application as a novel cancer target in the hope of developing a new tumor targeting therapy. EXPERIMENTAL DESIGN The cell surface expression of Derlin-1 was shown by immunofluorescence analysis of nonpermeabilized cells and Western blotting of fractional proteins of tumor cells. Derlin-1 expression in cancerous tissues was also shown by immunohistochemistry. Biodistribution analysis and gamma-scintigraphic imaging were done using (125)I-labeled Derlin-1 targeting antibody in isogenic mice models. Finally, tumor-bearing mice were treated by the anti-Derlin-1 polyclonal antibody and monoclonal antibodies. RESULTS Derlin-1 was expressed on various tumor cell surfaces and adopted a homodimer conformation. Robust cytoplasmic and membrane expression of Derlin-1 was detected in various types of human cancers tissues but was not correlated with any clinicopathologic features of pancreatic cancer. Derlin-1 directed antibodies specifically targeted to colon tumors and significantly suppress tumor growth in isogenic mice. CONCLUSIONS These preclinical data show that Derlin-1 protein is a functional molecular target expressed on the tumor cell surface and is a candidate therapeutic target that may be translated into clinical applications.
Collapse
Affiliation(s)
- Yuliang Ran
- Department of Cell and Molecular Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Langer R, Feith M, Siewert JR, Wester HJ, Hoefler H. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus. BMC Cancer 2008; 8:70. [PMID: 18331622 PMCID: PMC2270853 DOI: 10.1186/1471-2407-8-70] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 03/10/2008] [Indexed: 01/01/2023] Open
Abstract
Background Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no pT2 stage (p = 0.031). Conclusion We could demonstrate an association of GRP78 and GRP94 mRNA and protein expression with tumor stage and behaviour in esophageal adenocarcinomas. Increased expression of GRP78 may be responsible for controlling local tumor growth in early tumor stages, while high expression of GRP78 and GRP94 in advanced stages may be dependent from other factors like cellular stress reactions due to glucose deprivation, hypoxia or the hosts' immune response.
Collapse
Affiliation(s)
- Rupert Langer
- Institute of Pathology, TU München, München, Germany.
| | | | | | | | | |
Collapse
|
29
|
Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg Med Chem 2007; 16:3291-301. [PMID: 18164205 DOI: 10.1016/j.bmc.2007.12.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/04/2007] [Accepted: 12/06/2007] [Indexed: 02/04/2023]
Abstract
The Hsp70 molecular chaperones are ATPases that play critical roles in the pathogenesis of many human diseases, including breast cancer. Hsp70 ATP hydrolysis is relatively weak but is stimulated by J domain-containing proteins. We identified pyrimidinone-peptoid hybrid molecules that inhibit cell proliferation with greater potency than previously described Hsp70 modulators. In many cases, anti-proliferative activity correlated with inhibition of J domain stimulation of Hsp70.
Collapse
|
30
|
Beachy S, Kisailus A, Repasky E, Subjeck J, Wang X, Kazim A. Engineering secretable forms of chaperones for immune modulation and vaccine development. Methods 2007; 43:184-93. [PMID: 17920514 DOI: 10.1016/j.ymeth.2007.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 06/25/2007] [Indexed: 12/22/2022] Open
|