1
|
Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The wide spread of phenols and their toxicity in the environment pose a severe threat to the existence and sustainability of living organisms. Rapid detection of these pollutants in wastewaters has attracted the attention of researchers from various fields of environmental science and engineering. Discoveries regarding materials and method developments are deemed necessary for the effective detection and remediation of wastewater. Although various advanced materials such as organic and inorganic materials have been developed, secondary pollution due to material leaching has become a major concern. Therefore, a natural-based material is preferable. Clay is one of the potential natural-based sorbents for the detection and remediation of phenols. It has a high porosity and polarity, good mechanical strength, moisture resistance, chemical and thermal stability, and cation exchange capacity, which will benefit the detection and adsorptive removal of phenols. Several attempts have been made to improve the capabilities of natural clay as sorbent. This manuscript will discuss the potential of clays as sorbents for the remediation of phenols. The activation, modification, and application of clays have been discussed. The achievements, challenges, and concluding remarks were provided.
Collapse
|
2
|
Nakamura T, Mishima S, Ogata F, Kawasaki N. Characteristics of 21 Types of Tea Waste for Adsorbance of Ionic Dyes from Aqueous Solutions. Chem Pharm Bull (Tokyo) 2022; 70:254-260. [DOI: 10.1248/cpb.c21-00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Simultaneous Removal of Dye and Chemical Oxygen Demand from Aqueous Solution by Combination Treatment with Ozone and Carbonaceous Material Produced from Waste Biomass. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2018. [DOI: 10.1380/ejssnt.2018.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
|