1
|
Zhang S, Lu X, Liu X, Fang K, Gong J, Si J, Gao W, Liu D. In Situ Generated UiO-66/Cotton Fabric Easily Recyclable for Reactive Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12095-12102. [PMID: 36150189 DOI: 10.1021/acs.langmuir.2c01967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In view of the environmental pollution caused by the widespread use of reactive dyes in the printing and dyeing industry, the modified cotton fabric was loaded with the extremely stable metal-organic frame (MOF) material UiO-66 for removing reactive dyes from colored wastewater. UiO-66/cotton fabric was prepared by in situ synthesis, and its surface morphology and structure were analyzed by XRD, SEM, BET, and XPS. The adsorption performance of UiO-66/cotton fabric on reactive dyes was investigated by adsorbent dosage, adsorption time and temperature, dye concentration, pH, and so on. The results indicated that the adsorption equilibrium time of UiO-66/cotton fabric on reactive orange 16 was 120 min, and the removal rate was about 98%. The adsorption process belongs to simple molecular layer chemisorption and can be regarded as a spontaneous heat absorption reaction, which was consistent with the proposed secondary kinetic model and Langmuir isothermal adsorption model. In addition, the reactive dyes with a higher molecular weight of each sulfonic acid group are more hydrophobic, and the dyes are more likely to aggregate and deposit on the adsorbent surface by electrostatic attraction, hydrogen bonding, and π-π accumulation. Therefore, this work provides a potential UiO-66/cotton fabric application for the effective adsorption of reactive dyes in textile wastewater.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Xue Lu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Kuanjun Fang
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
- College of Textiles & Clothing, Qingdao University 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory for Biofibers and Eco-textiles, 308 Ningxia Road, Qingdao 266071, China
- Collaborative Innovation Center for Eco-textiles of Shandong Province, 308 Ningxia Road, Qingdao 266071, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Junjie Si
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Wenchao Gao
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| | - Dongdong Liu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China
| |
Collapse
|