1
|
Ruan H, Dai Z, Yan J, Long X, Chen Y, Yang Y, Yang Q, Zhu J, Zheng M, Zhang X. ZBTB24 (Zinc Finger and BTB Domain Containing 24) prevents recurrent spontaneous abortion by promoting trophoblast proliferation, differentiation and migration. Bioengineered 2022; 13:2777-2790. [PMID: 35038951 PMCID: PMC8973579 DOI: 10.1080/21655979.2021.2019655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common complication during early gestation, which is associated with aberrant DNA methylation. Zinc Finger and BTB Domain Containing 24 (ZBTB24) plays a critical role in facilitating DNA methylation and cell proliferation. However, the regulatory role of ZBTB24 on trophoblast development in RSA remains unclear. In this study, ZBTB24 expression was compared between decidua tissues of RSA patients and induced abortion controls from a published dataset, which was further validated in placental villi tissues by RT-qPCR and Western blot. The roles of ZBTB24 in trophoblast proliferation, differentiation, and migration were investigated by functional assays after ZBTB24 knockdown or overexpression in HTR-8/SVneo cells. Our results showed that ZBTB24 expression was significantly decreased in RSA patients, and ZBTB24 expression level positively regulated cell viability, differentiation, and migration in HTR-8/SVneo cells. We further demonstrated that ZBTB24 modulated the expression of E-cadherin by altering the DNA methylation at the promoter region. Overall, the downregulation of ZBTB24 is implicated in RSA by inhibiting trophoblast proliferation, differentiation, and migration. Therefore, ZBTB24 may serve as a promising therapeutic target and diagnostic marker for RSA.
Collapse
Affiliation(s)
- Haibo Ruan
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Zhenzhen Dai
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Jinyu Yan
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Xiaoxi Long
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Yi Chen
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Youlin Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Qian Yang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Jun Zhu
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Meiyun Zheng
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Xiahui Zhang
- Department of Obstetrics and Gynecology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| |
Collapse
|
2
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Martinez-Fierro ML, Hernández-Delgadillo GP, Flores-Morales V, Cardenas-Vargas E, Mercado-Reyes M, Rodriguez-Sanchez IP, Delgado-Enciso I, Galván-Tejada CE, Galván-Tejada JI, Celaya-Padilla JM, Garza-Veloz I. Current model systems for the study of preeclampsia. Exp Biol Med (Maywood) 2018; 243:576-585. [PMID: 29415560 DOI: 10.1177/1535370218755690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pressure, urine protein concentrations, symptomatology, and onset of disease there is a wide range of phenotypes, from mild forms developing predominantly at the end of pregnancy to severe forms developing in the early stage of pregnancy. In the worst cases severe forms of PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around 8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophysiology, in general a deficient trophoblast invasion during placentation at first stage of pregnancy, in combination with maternal conditions are accepted as a cause of endothelial dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia, angiogenesis, oxygen deregulation, and immune response to maternal-fetal interactions. The advances in mathematical and computational modeling of metabolic network behavior, gene prioritization, the protein-protein interaction network, the genetics of PE, and the PE prediction/classification are discussed. Finally, the potential of these models to enable understanding of PE pathogenesis and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted. Impact statement This review is important to the field of preeclampsia (PE), because it provides a description of the principal in vitro, in vivo, and in silico models developed for the study of its principal aspects, and to test emerging therapies or biomarkers predicting the syndrome before their evaluation in clinical trials. Despite the current advance, the field still lacking of new methods and original modeling approaches that leads to new knowledge about pathophysiology. The part of in silico models described in this review has not been considered in the previous reports.
Collapse
Affiliation(s)
- M L Martinez-Fierro
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - G P Hernández-Delgadillo
- 3 Laboratorio de Investigación en Farmacología, 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - V Flores-Morales
- 4 Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - E Cardenas-Vargas
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,5 Hospital General Zacatecas "Luz Gonzalez Cosio", Secretaria de Salud de Zacatecas, 98160 Zacatecas, México
| | - M Mercado-Reyes
- 6 Laboratorio de Biología de la Conservación, Unidad Académica de Ciencias Biológicas, 27779 Universidad Autónoma de Zacatecas , 98060 Zacatecas, México
| | - I P Rodriguez-Sanchez
- 7 Departamento de Génetica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, México
| | - I Delgado-Enciso
- 8 Faculty of Medicine, Universidad de Colima, 28040 Colima, Mexico.,9 State Cancer Institute, Health Secretary of Colima, 28060 Colima, Mexico
| | - C E Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J I Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J M Celaya-Padilla
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México.,11 CONACYT - Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - I Garza-Veloz
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| |
Collapse
|
4
|
Shpiz A, Ben-Yosef D, Kalma Y. Impaired function of trophoblast cells derived from translocated hESCs may explain pregnancy loss in women with balanced translocation (11;22). J Assist Reprod Genet 2016; 33:1493-1499. [PMID: 27503403 DOI: 10.1007/s10815-016-0781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The aim of the study was to study whether the trophoblasts carrying unbalanced translocation 11,22 [t(11;12)] display abnormal expression of trophoblastic genes and impaired functional properties that may explain implantation failure. METHODS t(11;22) hESCs and control hESCs were differentiated in vitro into trophoblast cells in the presence of BMP4, and trophoblast vesicles (TBVs) were created in suspension. The expression pattern of extravillous trophoblast (EVT) genes was compared between translocated and control TBVs. The functional properties of the TBVs were evaluated by their attachment to endometrium cells (ECC1) and invasion through trans-well inserts. RESULTS TBVs derived from control hESCs expressed EVT genes from functioning trophoblast cells. In contrast, TBVs differentiated from the translocated hESC line displayed impaired expression of EVT genes. Moreover, the number of TBVs that were attached to endometrium cells was significantly lower compared to the controls. Correspondingly, invasiveness of trophoblast-differentiated translocated cells was also significantly lower than that of the control cells. CONCLUSIONS These results may explain the reason for implantation failure in couple carriers of t(11;22). They also demonstrate that translocated hESCs comprise a valuable in vitro human model for studying the mechanisms underlying implantation failure.
Collapse
Affiliation(s)
- Alina Shpiz
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.
| | - Yael Kalma
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| |
Collapse
|
5
|
Soares MJ, Chakraborty D, Kubota K, Renaud SJ, Rumi MAK. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:247-59. [PMID: 25023691 DOI: 10.1387/ijdb.140083ms] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Implantation of the embryo into the uterus triggers the initiation of hemochorial placentation. The hemochorial placenta facilitates the acquisition of maternal resources required for embryo/fetal growth. Uterine spiral arteries form the nutrient supply line for the placenta and fetus. This vascular conduit undergoes gestation stage-specific remodeling directed by maternal natural killer cells and embryo-derived invasive trophoblast lineages. The placentation site, including remodeling of the uterine spiral arteries, is shaped by environmental challenges. In this review, we discuss the cellular participants controlling pregnancy-dependent uterine spiral artery remodeling and mechanisms responsible for their development and function.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
| | | | | | | | | |
Collapse
|
6
|
Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S, Peng C. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1177-89. [PMID: 21356369 DOI: 10.1016/j.ajpath.2010.11.066] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/02/2010] [Accepted: 11/18/2010] [Indexed: 12/22/2022]
Abstract
Trophoblast cell invasion into the uterus is an essential process for successful pregnancy, and shallow invasion of trophoblasts into the maternal decidua is linked to preeclampsia. We have reported that Nodal, a member of the transforming growth factor-β superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit trophoblast proliferation and to induce apoptosis. In this study, we examined the spatial and temporal expression patterns of Nodal and ALK7 in human placenta from normal and preeclamptic pregnancies and investigated whether Nodal regulated trophoblast migration and invasion. Nodal and ALK7 were detected in villous and extravillous trophoblast cell populations in early gestation, and their levels were strongly up-regulated in preeclamptic placenta. Overexpression of Nodal or constitutively active ALK7 decreased cell migration and invasion, whereas knockdown of Nodal and ALK7 had the opposite effects. In placental explant culture, treatment with Nodal inhibited trophoblast outgrowth, whereas Nodal small-interfering RNA strongly induced the expansion of explants and the migration of extravillous trophoblast cells. Nodal stimulated the secretion of tissue inhibitor of metalloproteinase-1 and inhibited matrix metalloproteinase (MMP)-2 and MMP-9 activity. These findings suggest that the Nodal/ALK7 pathway plays important roles in human placentation and that its abnormal signaling may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- Lubna Nadeem
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rout UK. Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells. Reprod Biol Endocrinol 2006; 4:44. [PMID: 16923192 PMCID: PMC1592099 DOI: 10.1186/1477-7827-4-44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 08/21/2006] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Valproate, thalidomide and alcohol (ethanol) exposure during the first trimester of pregnancy is known to cause several developmental disorders. All these teratogens are known to pass the placental barrier and interfere directly with the normal development of the fetus. However, these teratogens also alter the formation and function of the placenta itself which may in turn affect the proper nourishment and development of the fetus. Optimum development of the placenta requires adequate invasion of trophoblast into the maternal uterine tissues. Changes in the migratory behavior of trophoblast by maternal exposure to these teratogens during placentogenesis may therefore alter the structure and function of the placenta. METHODS In the present study, the effects of sodium valproate, thalidomide and alcohol on the migration of human first trimester trophoblast cell line (HTR-8/SVneo) were examined in vitro. Cells were cultured in the wells of 48-well culture plates as mono or multilayers. Circular patches of cells were removed from the center of the wells by suction, and the migration of cells into the wound was studied using microscopy. Effects of low and high concentrations of valproate, thalidomide and alcohol were examined on the healing of wounds and on the migration rate of cells by determining the wound areas at 0, 3, 6, 12, 24 and 48 h. Effects of drugs and alcohol on the proliferation and the expression levels of integrin subunits beta1 and alpha5 in cells were examined. RESULTS The migration rates of trophoblast differed between wounds created in mono and multilayers of cells. Exposure to teratogens altered the migration of trophoblast into mono and multilayer wounds. The effects of valproate, thalidomide and alcohol on the proliferation of cells during the rapid migratory phase were mild. Drug exposure caused significant changes in the expression levels of beta1 and alpha5 integrin subunits. CONCLUSION Results suggest that exposure to valproate, thalidomide or alcohol during the first trimester of pregnancy may change the ultrastructure of the placenta by altering the migration of trophoblast cells and this effect may be mediated by drug- or alcohol-induced changes in the expression levels of beta1 and alpha5 integrin subunits.
Collapse
Affiliation(s)
- Ujjwal K Rout
- Division of Pediatric Surgery Research Laboratories, Department of Surgery and the Center for Psychiatric Neurosciences, UMMC, Jackson, MS 39216, USA.
| |
Collapse
|